首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Machining of titanium at high cutting speeds such as from 4 m/s to 8 m/s is very challenging. In this paper, a new generation of driven rotary lathe tool was developed for high-speed machining of a titanium alloy, Ti–6Al–4V. The rotary tool was designed and fabricated based on the requirements of compact structure, sufficient stiffness and minimal edge runout. Cylindrical turning experiments were conducted using the driven rotary tool (DRT) and a stationary cutting tool with the same insert, for comparison in the high-speed machining of Ti–6Al–4V. The results showed that the DRT can significantly increase tool life. Increase in tool life of more than 60 times was achieved under certain conditions. The effects of the rotational speed of the insert were also investigated experimentally. Cutting forces were found to decline slightly with increase of the rotational speed. Tool wear appears to increase with the rotational speed in a certain speed range.  相似文献   

2.
Cubic Nitride Boron (CBN) tools are generally used for machining harder alloys such as hardened high Cr steels, titanium and nickel alloys. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of different CBN tool grades in finish turning Ti–6Al–4V (IMI 318) alloy at high cutting conditions, up to 250 m min−1, with various coolant supplies. Tool wear, failure modes, cutting and feed forces and surface roughness of machined surfaces were monitored and used to access the performance of the cutting tools. Comparative trials were carried out with uncoated carbide tools when machining at a speed of 150 m min−1. Test results show that the performance of CBN tools, in terms of tool life, at the cutting conditions investigated is poor relative to uncoated carbide tools, as expected and often, reported due probably to rapid notching and excessive chipping of the cutting edge associated with a relatively high diffusion wear rate that tends to weaken the bond strength of the tool substrate. An increase in the CBN content of the cutting tool also led to a reduction in tool life when machining at the cutting conditions investigated.  相似文献   

3.
This work is focused on the combined study of the evolution of tool wear, quality of machined holes and surface integrity of work-piece, in the dry drilling of alloy Ti–6Al–4V. Tool wear was studied with optical microscope and SEM–EDS techniques. The quality of machined holes was estimated in terms of geometrical accuracy and burr formation. Surface integrity involves the study of surface roughness, metallurgical alterations and microhardness tests. The end of tool life was reached because of catastrophic failure of the drill, but no significant progressive wear in cutting zone was observed previously. High hole quality was observed even near tool catastrophic failure, evaluated from the point of view of dimensions, surface roughness and burr height. However, microhardness measurements and SEM–EDS analysis of work-piece showed important microstructural changes related with a loss of mechanical properties. Depending on the application of the machined component, the state of the work-piece could be more restrictive than the tool wear, and the end of tool life should be established from the point of view of controlled damage in a work-piece.  相似文献   

4.
吕娜 《机床与液压》2021,49(4):164-168
钛合金在切削过程中会产生严重的加工硬化现象,导致切削性下降、刀具磨损加剧,直接影响工件的加工质量。为研究钛合金切削性能和刀具磨损机制,利用ABAQUS软件建立了钛合金的有限元模型,对其切削过程进行仿真分析,研究硬质合金刀具磨损机制;设计Ti6Al4V钛合金车削实验,研究不同加工参数对刀具磨损程度的影响规律。研究结果表明:在切削钛合金时,刀具的磨损主要发生在刀尖和后刀面位置,刀具的磨损长度随车削速度的增加而变大,随车削深度的增加而减小,随进给量的增加呈现出先减小后变大的情况,实验和仿真结果趋于一致,平均误差在6%以内。  相似文献   

5.
 Surfaces generated when machining Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies was investigated. Longer tool life was recorded when machining Ti–6Al–4V with high-pressure coolant supplies and the recorded surface roughness Ra values were well below the tool rejection criterion (1.6 μm) for all cutting conditions investigated. The micro-structure of the machined surfaces were examined on a scanning electron microscope. Micrographs of the machined surfaces show that micro-pits and re-deposited work material were the main damages to the surfaces. Micro-hardness analysis showed hardening of the top machined surfaces when machining with conventional coolant while softening of the subsurface layer was observed when machining under high-pressure coolant supplies. The later is probably due to lower heat generated, with the consequent tempering action when machining with PCD tools with high-pressure coolant supplies. The microstructure below the machined surfaces had minimal or no plastic deformation when machining with conventional and high-pressure coolant supplies.  相似文献   

6.
Machining, especially dry machining of titanium alloys, has been one of the most significant challenges for carbide cutting tools. In this study, aluminum-rich AlTiN coating, as well as TiAlSiN nanocomposite coating, were successfully employed for dry milling of Ti-6Al-4V alloy with high efficiency and long tool life. At the cutting speeds of 150 m/min and 200 m/min, the tool life of the TiAlSiN-coated tool exceeds that of AlTiN-coated tool by 32 and 66%, respectively. The wear modes for both coated tools include the uniform flank wear, smooth wear, chipping, coating and substrate flaking, crater and notch wear, and the wear mechanisms include adhesion, diffusion, oxidation and crack. Among them, the wear mechanism is dominated by the adhesion and oxidation wear. As compared with AlTiN coating, TiAlSiN coating exhibits better mechanical properties and oxidation resistance, which contribute to a better cutting performance, fewer thermal cracks and smaller and uniform workpiece chips during the dry milling of Ti-6Al-4V alloy.  相似文献   

7.
To inhibit chips burning in the high-speed cutting of Ti-6Al-4V, nitrogen gas with 0.7 MPa pressure was ejected at the milling zone. The high speed flowing of nitrogen gas speeds up the chips leaving, and prevents the chips from burning at the same time. By this method the cutting force is reduced. Especially, the temperature increment of the finished surface is smaller than 5 ℃. This prevents the increase of hardness, improves the roughness of the finished surface, and reduces the tools wear. Comparing and analyzing the morphology and color of chips, which are obtained from the high-speed machining of Ti-6Al-4V with and without nitrogen gas ejection, show the action mechanism of nitrogen gas during the high-speed machining of titanium alloy, and it is concluded that nitrogen gas can be used to realize the proper high-speed milling of Ti-6Al-4V titanium alloy.  相似文献   

8.
Pulsed infrared laser irradiation was used to positively identify small fatigue cracks on the surface of fatigue damaged Ti–6Al–4V specimens. The resulting transient thermoelastic deformation perceptibly changes the opening of partially closed surface cracks without affecting other scatterers, such as surface grooves, corrosion pits, coarse grains, etc. that might hide the fatigue crack from ultrasonic detection. We found that this method, which was previously shown to be very effective in 2024 aluminum alloy, must be modified in order to successfully adapt it to Ti–6Al–4V titanium alloy, where significant thermo-optical modulation was found even from straight corners or open notches. This spurious modulation is caused by direct thermal modulation of the sound velocity in the intact material rather than thermal stresses via crack closure. Different methods have been developed to distinguish direct thermal modulation from crack-closure modulation due to thermoelastic stresses. It was found that the modified thermo-optical modulation method can increase the detectability of hidden fatigue cracks in Ti–6Al–4V specimens by approximately one order of magnitude.  相似文献   

9.
Titanium alloy is widely used in the aerospace industry for applications requiring high strength at elevated temperature and high mechanical resistance. The difficulty of dislocation motion through the microstructure is responsible for its high yield strength. However, the main problems encountered when machining titanium alloy are the low material removal rate and the short tool life.This study investigated the suitability of uncoated cemented carbide tools in ball-end milling of the aerospace titanium alloy Ti-6242S. The experiments were carried out under dry cutting condition. Cutting speeds in the range of 60–150 m/min were considered. The axial and radial depths of cut were kept constant at 2.0 and 8.8 mm, respectively, and the feed rate values of 0.1 and 0.15 mm/tooth were selected. SEM analysis has been carried out on the worn tools and shows that flank wear and excessive chipping on the flank edge are the main tool failure modes. For both feed rates, the results demonstrate that the higher the cutting speed the better is the surface finish. The FEM simulation provides good results on modelling of chip formation and can be helpful to calculate the contact parameters and to understand the tool wear mechanisms when dry machining aerospace titanium alloys.  相似文献   

10.
Orthogonal cutting tests were undertaken to investigate the mechanisms of chip formation for a Ti–6Al–4V alloy and to assess the influences of such on acoustic emission (AE). Within the range of conditions employed (cutting speed, vc=0.25–3.0 m/s, feed, f=20–100 μm), saw-tooth chips were produced. A transition from aperiodic to periodic saw-tooth chip formation occurring with increases in cutting speed and/or feed. Examination of chips formed shortly after the instant of tool engagement, where the undeformed chip thickness is slightly greater than the minimum undeformed chip thickness, revealed a continuous chip characterised by the presence of fine lamellae on its free surface. In agreement with the consensus that shear localisation in machining Ti and its alloys is due to the occurrence of a thermo-plastic instability, the underside of saw-tooth segments formed at relatively high cutting speeds, exhibiting evidence of ductile fracture. Chips formed at lower cutting speeds suggest that cleavage is the mechanism of catastrophic failure, at least within the upper region of the primary shear zone. An additional characteristic of machining Ti–6Al–4V alloy at high cutting speeds is the occurrence of welding between the chip and the tool. Fracture of such welds appears to be the dominant source of AE. The results are discussed with reference to the machining of hardened steels, another class of materials from which saw-tooth chips are produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号