首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
目的 提高TA15合金的表面硬度,改善其耐磨性能.方法 以Ti/Ni+Si3 N4/ZrO2混合粉末为原料,利用激光熔覆技术,在TA15钛合金表面制备出以ZrO2颗粒和原位生成Ti5 Si3、TiN为增强相,以金属化合物TiNi、Ti2 Ni为基体的复合涂层.采用X射线衍射仪、扫描电镜及能谱仪等手段分析激光熔覆涂层的显微组织及磨损表面,通过硬度测试、摩擦磨损实验,对熔覆层的显微硬度和耐磨性进行评估.结果 熔覆层与基体形成了良好的冶金结合,熔覆层组织中TiNi和Ti2 Ni金属化合物基体上弥散分布着Ti5 Si3、TiN树枝晶和ZrO2颗粒;与不含ZrO2熔覆层相比,含有ZrO2熔覆层组织的晶粒得到细化;熔覆层中原位生成的TiN桥接在裂纹上,具有增韧的作用;熔覆层的显微硬度分布在835~1050 HV区间内,约为基体硬度的3倍左右;在干滑动摩擦磨损下,熔覆层的磨损量约为钛合金基体磨损量的1/6,其主要磨损机制为磨粒磨损和黏着磨损.结论 熔覆层中高硬度、耐磨陶瓷相和高韧性相的共同配合,显著提高了钛合金表面的硬度和耐磨性.  相似文献   

2.
将Al、Ti和TiC 粉末预涂在AA6063铝合金表面,采用激光熔覆法制备了TiC/Al_3Ti复合材料涂层,分析了激光熔覆层的显微组织和硬度分布.结果表明,采用合适的激光工艺可获得无裂纹和孔洞且表面平整的熔覆层.熔覆层由枝晶状Al_3Ti、枝晶间α-Al和均匀分布的TiC颗粒组成,TiC颗粒在激光辐照过程中未发生熔解,熔覆层与基材的界面结合良好.随与熔覆层表面距离的增加,Al_3Ti枝晶的尺寸变大,α-Al的含量减少.激光熔覆层的硬度可达700 HV0.2,显著改善了AA6063铝合金的表面硬度.  相似文献   

3.
采用激光熔覆工艺在TC4钛合金基体上制备了Ni60-25%WC+10%Ti C复合涂层,并通过场发射扫描电镜(FESEM)、XRD,摩擦磨损试验分析研究了熔覆层的组织和性能。结果表明,熔覆层中主要以树枝状晶为主,在1200 W时熔覆层中出现了一些块状组织,XRD分析表明,熔覆层中产生了Ti C、WC、VC等陶瓷相,另外还形成了Al Ni_3、Al_(0.96)B_(0.04)Ni_3、Cr_2Ti以及C_(0.12)Fe_(1.88)金属化合物,这些相对于提高熔覆层表面硬度非常有利。硬度测试结果表明,熔覆层最高硬度可达1176 HV0.3,比基体硬度提高了322%。摩擦磨损结果表明,在1000 W时由于WC、Ti C等颗粒未熔,导致摩擦过程中硬质颗粒脱落,其摩擦因数甚至高于基体。而随着功率的增大,WC和Ti C等熔化、重新形核并长大,这些硬质相不易脱落,因此其摩擦因数更小,分别是0.18和0.10。  相似文献   

4.
张天刚  肖海强  孙荣禄  姚波  张倩 《表面技术》2019,48(12):182-188
目的通过激光熔覆技术在Ti811钛合金表面制备Ni基复合涂层,以改善其摩擦磨损性能。方法采用同轴送粉激光熔覆技术在钛合金表面制备Ni45+WC+Y2O3多道搭接激光熔覆层,运用XRD、SEM、EDS分析熔覆层微观组织及相组成,运用Bramfitt二维点阵错配度理论,计算低指数晶面间二维错配度,分析复合相结构。采用显微硬度计测试熔覆层显微硬度值,通过摩擦磨损试验机测试基材和熔覆层的摩擦磨损性能,采用白光非接触式轮廓仪测量基材和熔覆层磨损体积,结合磨损表面形貌,分析熔覆层磨损机制。结果熔覆层生成相主要包括Ti2Ni、Ti B2、Ti C、α-Ti以及Ti C依附于Ti B2的复合生长相。复合相中,Ti B2(0001)晶面与Ti C(111)晶面受热膨胀影响的二维点阵错配度δ=0.907%,满足晶格界面共格原则,Ti B2可有效作为Ti C的异质形核基底。熔覆层显微硬度值约为1050~1100HV0.5,摩擦系数约为0.42,磨损体积为4.07×107μm3,磨损率为3.0×10–4mm3/(N·m),磨损机制是以磨粒磨损为主,粘着磨损为辅的混合磨损机制。结论与基材对比,熔覆层显微硬度值提高约2.5倍,摩擦系数和磨损率分别降低约35%和36%,熔覆层摩擦磨损性能显著提高。  相似文献   

5.
为了改善铝合金表面的磨损性能,在A390铝合金表面激光熔覆制备Ni Cr Al/Ti C复合涂层。借助XRD和EDS分析了涂层的物相组成;通过SEM分析了涂层的微观组织;结合Al-Ni二元平衡相图和热力学知识对熔覆层Al-Ni金属间化合物形成机制进行了分析。结果表明:涂层物相包括Al Ni、Al3Ni2、Ti C、Cr13Ni5Si2、Cu9Al4和少量α-Al相;涂层自下至上分别为胞状晶、柱状树枝晶和等轴晶;熔覆层中Ti C颗粒强化机制包括细晶强化、硬质相颗粒弥散强化和位错堆积强化;熔覆层平均显微硬度为676 HV0.2,是A390铝合金的4倍。  相似文献   

6.
利用激光熔覆技术在不锈钢基材表面原位合成了Ni3Al金属间化合物覆层。用XRD和SEM分析了覆层的相组成和组织结构。在CSM栓-盘摩擦磨损试验机上对覆层的高温摩擦磨损性能进行了测试。结果表明:覆层由单相Ni3Al金属间化合物组成;覆层与基材呈良好的冶金结合;覆层的摩擦因数和磨损率在500℃时具有最低值,分别为0.51和1.38×10-4mm3/Nm。  相似文献   

7.
以Ti、Ni、Al N粉末混合物为原料,采用激光熔覆技术在TC4表面制备出以金属间化合物Ti_2Ni、Ti Ni、Ti_3Al为熔覆层基体,以Ti N为强化相的复合涂层,并对涂层的组织、硬度及摩擦磨损性能进行研究。结果表明,Ti、Ni成分配比对熔覆层的组织形貌、硬度和耐磨性均影响较大。当Ti含量较多时,Ti_2Ni以枝晶状大量存在;当Ni含量较多时,Ti Ni大量存在作为熔覆层基体,而Ti_2Ni以片状存在;当Ti、Ni、Al N的质量百分比为56∶34∶10时熔覆层的综合性能最优,熔覆层表层的硬度值为1000 HV,约为基体的3倍,摩擦系数为基体的1/2,耐磨性约为基体的22.3倍;复合涂层高硬度和高耐磨性的原因在于陶瓷强化相Ti N、高硬度的金属间化合物Ti_2Ni及高耐磨性的金属间化合物Ti Ni、Ti_3Al的存在。  相似文献   

8.
采用激光熔覆技术在Q235钢表面制备了 Ti3SiC2增强镍基熔覆层,通过光学显微镜、扫描电镜、显微硬度仪和摩擦磨损试验等研究了熔覆层的宏观形貌、组织、硬度分布、物相和耐磨性能.结果表明:由于Ti3SiC2的加入降低了熔池的流动性,导致加入Ti3SiC2的熔覆层与基体交界处形貌为波浪状,熔覆层组织有向枝晶转化趋势;加入Ti3SiC2的熔覆层的物相主要为γ-Ni基体、金属间化合物Ni3Fe、Cr1.22Ni2.88和硬质相TiC、SiC;由于表层晶粒细化等综合因素影响,未加入Ti3SiC2的熔覆层最高硬度在表层;由于Ti3SiC2在高温下分解后凝固形成的高硬度的SiC和TiC,导致加入Ti3SiC2的熔覆层的最高硬度出现在熔覆层的次表层;未加入Ti3SiC2的熔覆层磨损量是加入的4倍,且磨损机理由粘着磨损、氧化磨损转化为磨粒磨损、氧化磨损.  相似文献   

9.
激光原位合成NiAl金属间化合物覆层的性能   总被引:1,自引:0,他引:1  
利用激光熔覆技术在不锈钢(1Cr18Ni9Ti)基材上原位合成了单相NiAl金属间化合物覆层,利用XRD和SEM分析了覆层的组成和微观组织,用栓-盘摩擦磨损试验机对覆层摩擦学性能进行了研究.结果表明:激光工艺对NiAl覆层的显微组织结构有重要影响,在较低的功率密度条件下制备的NiAl覆层内部无裂纹和孔洞,与基底呈良好的冶金结合;覆层显微组织结构致密,显微硬度达到500 HV并呈现出良好的摩擦磨损性能.  相似文献   

10.
利用激光表面合金化技术以铜粉为初始原料,在纯钛表面通过激光表面合金化原位反应成功制备了Ti-Cu纳米晶金属间化合物涂层。采用X-射线衍射仪(XRD)和高分辨透射电镜(HRTEM)分析了涂层的组成和组织结构,测试了涂层在不同载荷下的摩擦磨损性能。结果表明:通过激光表面合金化制备的涂层主要成分为Ti和金属间化合物TiCu、TiCu3、Ti3Cu相。涂层含有纳米晶Ti-Cu金属间化合物,晶粒尺寸为10~500nm。Ti-Cu金属间化合物涂层的摩擦因数随载荷增加而减小,体积磨损率在10-6~10-5 mm3/Nm数量级范围并随载荷的增加而增大,与纯钛底材相比,Ti-Cu金属间化合物涂层具有良好的耐磨性。  相似文献   

11.
利用激光熔化沉积技术制备出分别以NiTi和Ni3Ti为初生相的NiTi/Ni3Ti金属间化合物耐磨合金,采用XRD、OM、SEM、EDS等手段分析合金的组织,测试合金的室温干滑动磨损性能。结果表明,其室温干滑动磨损机制为软磨料磨损和氧化磨损;对于以Ni3Ti为初生相的合金,其室温干滑动磨损机制在中低负荷下为氧化磨损和显微切削,在高负荷下则是Ni3Ti的显微切削;以NiTi为初生相的NiTi/Ni3Ti金属间化合物合金具有更好的抗室温摩擦磨损性能。  相似文献   

12.
激光熔炼Ti5Si3/NiTi金属间化合物合金的组织及耐磨性   总被引:1,自引:0,他引:1  
设计并利用激光熔炼技术制备出了以Ti5Si3为增强相、以NiTi为基体的金属间化合物新型耐磨合金,研究了增强相Ti5Si3的含量对合金显微组织、显微硬度及耐磨性能的影响。结果表明,随Ti5Si3含量的增加,合金显微组织由亚共晶向共晶、过共晶转化,增强相Ti5Si3由细层片状共晶相向块状初生相转变,合金显微硬度随之显著提高;在室温干滑动磨损条件下,Ti5Si3/NiTi金属间化合物合金具有优异的耐磨性,并随Ti5Si3增强相的增加而显著提高。Ti5Si3增强相的高硬度和NiTi基体的高韧性及伪弹性效应是该合金具有优异耐磨性能的主要原因。  相似文献   

13.
以Ti14Si6Ni80合金粉末为原料,利用激光熔敷技术在BT9钛合金表面制得以金属硅化物Ti5Si3为增强相、以金属间化合物NiTi为基体的快速凝固金属间化合物复合材料涂层,分析了该涂层的显微组织,在室温干滑动磨损条件下测试了其耐磨性。研究结果表明,涂层硬度高、组织致密、与基材之间为完全冶金结合,在干滑动磨损试验条件下具有较好的耐磨性。涂层具有优异耐磨性的主要原因是作为耐磨增强相的金属硅化物Ti5Si3具有高硬高耐磨的特性,在涂层中起到了抗磨骨干作用,同时作为涂层基体的金属间化合物NiTi由于具有极强的原子结合键及应力诱发马氏体相变特性,本身具有优异的耐磨性,在摩擦过程中对耐磨增强相Ti5Si3起到了强力支撑作用。  相似文献   

14.
以Ni79Ti21(wt%)合金粉末为原料,采用同步送粉激光熔敷技术在BT20钛合金表面制备出NiTi/Ni3Ti金属间化合物复合材料涂层,分析了该涂层的显微组织,测试了该涂层的室温干滑动磨损性能。结果表明,激光熔敷涂层组织均匀致密,与基材呈良好的冶金结合,具有优良的抗滑动磨损性能。  相似文献   

15.
利用激光熔炼技术制备出Ti5Si3-TiCo-Ti2Co多相金属间化合物新型耐磨合金,分析了合金的显微组织并测试了合金的室温干滑动磨损性能。结果表明,Ti5Si3-TiCo—Ti2Co多相金属间化合物耐磨合金组织均匀、致密,在室温干滑动磨损条件下具有优异的耐磨性能。Ti5Si3-TiCo—Ti2Co多相金属间化合物耐磨合金的磨损量随磨损时间的延长缓慢增加,磨损率先增加后降低;难熔金属硅化物Ti5Si3的高硬度及金属间化合物的反常屈服强度一温度关系及磨损过程中表面粘附转移保护层的形成,是Ti5Si3-TiCo—Ti2Co多相金属间化合物耐磨合金在室温干滑动磨损试验条件下具有较好耐磨性能的原因。  相似文献   

16.
将Al和Ti粉末按照摩尔比为3∶1预涂在AA6063铝合金表面进行激光熔覆处理。试验结果表明,采用合适的激光功率和扫描速度可获得无裂纹、无孔洞且表面平整的涂层。涂层由枝晶状Al3Ti和枝晶间纯Al组成,Al3Ti枝晶靠近试样表面一侧细小、而靠近基材一侧粗大,涂层和基材之间形成了良好的冶金结合。涂层的硬度(HV)可达500,显著改善了铝合金的表面性能。  相似文献   

17.
A wear resistant intermetallic alloy consisting of TiNi primary dendrites and Ti2Ni matrix was fabricated by the laser melting deposition manufacturing process. Wear resistance of Ti2Ni/TiNi alloy was evaluated on an abrasive wear tester at room temperature under the different loads. The results show that the intermetallic alloy suffers more abrasive wear attack under low wear test load of 7, 13 and 25 N than high-chromium cast-iron. However, the intermetallic alloy exhibits better wear resistance under wear test load of 49 N. Abrasive wear of the laser melting deposition TiENi/TiNi alloy is governed by micro-cutting and plowing. Pseudoelasticity of TiNi plays an active role in contributing to abrasive wear resistance.  相似文献   

18.
利用激光熔覆技术在1Cr18Ni9Ti奥氏体不锈钢表面制得了以TiC为增强相、以FeAl 金属间化合物为基体的耐磨复合材料涂层,研究了激光熔覆。FiC/FeAl复合材料涂层在干滑动磨损条件下的耐磨性能及磨损机制。结果表明:随着载荷和滑动速率的增加,TiC/FeAl金属间化合物基复合材料涂层的磨损速率增加,其磨损机制随着载荷的增加逐渐由磨料磨损向粘着磨损转变;激光熔覆层中TiC体积分数的增加,一方面提高了涂层的磨料磨损抗力,另一方面降低了熔覆层表面与对磨材料之间的粘着倾向,提高了TiC/FeAl涂层的滑动磨损性能。激光熔覆TiC/FeAl金属间化合物基复合材料涂层具有优异的耐磨性能并随TiC体积分数的增加而提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号