首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。  相似文献   

2.
在Gleeble-1500热模拟机上对120°模具室温Bc方式ECAP变形8道次制备的平均晶粒尺寸约为200 nm的工业纯钛进行等温变速压缩实验,研究超细晶工业纯钛在变形温度为298~673 K和应变速率为1×10-4~1×100s-1条件下的流变应力行为。结果表明:变形温度和应变速率均对流变应力具有显著影响,峰值应力随变形温度的升高和应变速率的降低而降低;流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳,呈现稳态流变特征。采用双曲正弦模型确定了超细晶工业纯钛的变形激活能Q=104.46 kJ/mol和应力指数n=23,建立了相应的变形本构关系。  相似文献   

3.
采用Gleeble?1500热模拟实验机对Ag-SnO2(10%,质量分数)复合材料进行高温压缩变形实验,分析该材料在变形温度为750~900℃、应变速率为0.01~1 s?1条件下的流变应力变化规律;采用透射电镜(TEM)观察Ag-SnO2(10%)复合材料热压缩变形后的显微组织。采用双曲正弦确定了该材料的变形激活能,建立了以Zener-Hollomon参数描述的高温塑性变形本构模型,并验证了本构模型的准确性。结果表明:变形温度和应变速率均对流变应力有显著影响,流变应力随变形温度升高而减小,随应变速率的增加而增大。动态再结晶和孪晶共同作用是Ag-SnO2复合材料热压缩变形的主要变形机制,随应变速率增加,孪晶数量增多,并形成了二次孪晶。  相似文献   

4.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

5.
陈燕  扈立  魏刚  侯强 《钢管》2019,48(6)
利用Gleeble 3500热模拟试验机研究了工业纯钛TA1管材在660~780℃,应变速率为0.1~10 s~(-1)条件下的热压缩变形行为。利用线性拟合方法确定了材料常数及变形激活能,建立了双曲正弦函数形式本构方程。用Zenner-Hollomon参数对最大应力进行了预测,预测值与试验值能够较好地吻合。试验结果表明:工业纯钛TA1材料的应力-应变曲线表现出显著的加工硬化特征,流变应力随温度的升高而降低,随应变速率的下降而减小。工业纯钛TA1热压缩变形过程中,流变应力受变形温度及变形速率的显著影响;流变应力随温度的升高而降低,随变形速率的下降而减小。  相似文献   

6.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Zr合金在应变速率为0.001~10 s~(-1)、变形温度为550~900℃、最大变形程度为55%条件下的流变应力行为进行探讨。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并对其在热压缩过程中的组织演变进行观察。结果表明:热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。结合流变应力、应变速率和变形温度的相关性,计算得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和本构方程。合金动态再结晶的显微组织强烈受到应变速率的影响。  相似文献   

7.
以喷射沉积技术制备Mg-9Al-3Zn-1Mn-6Ca-1Nd合金的沉积坯,对其进行挤压变形和热压缩变形,重点研究了挤压态镁合金的热压缩变形行为和组织演变。结果表明,挤压态镁合金为α-Mg和微米级"含Nd的Al2Ca相"的双相组织;当应变速率一定时,流变应力随温度的升高而降低,当变形温度一定时,流变应力随应变速率的增大而增大。当温度和应变速率一定时,Mg基体的轴比(c/a)随变形程度的增加而降低,"拉压不对称性"得到改善。  相似文献   

8.
对Cu-Cr-Zr-Ag合金在Gleeble-1500D热模拟试验机上进行热压缩实验,对合金在应变速率为0.001~10 s-1、变形温度为650~950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行了研究。结果表明,流变应力随变形温度升高而减小,随应变速率提高而增大。Cu-Cr-Zr-Ag合金在热变形过程中的动态再结晶机制受变形温度和应变速率控制。当温度达到950℃,应变速率为0.001 s-1时,Cu-Cr-Zr-Ag合金发生完全的动态再结晶。该合金高温热压缩变形时的热变形激活能Q为343.23 k J/mol,同时利用逐步回归法建立了该合金的流变应力方程。  相似文献   

9.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

10.
为了研究某厂热连轧纯钛卷精轧段的变形抗力问题,根据工业生产的实际轧制工艺,确定该精轧段的轧件形变行为条件为:变形温度范围为700~800℃,应变速率为5~25 s~(-1),最大变形量为0.8,对纯钛进行热压缩试验。结果表明:纯钛的流变应力随变形温度升高而降低,随应变速率升高而升高,变形机制受到温度和应变速率的影响较大,温度为700℃、应变速率为1 s~(-1)时主要以动态回复为主,随着温度和应变速率的增加,动态再结晶程度不断增加,当温度为800℃、应变速率为20 s~(-1)时,再结晶比较充分,组织均匀性良好。根据热模拟实验得到的真应力-应变数据,同时考虑化学成分的影响,基于Johnson-Cook模型建立了能够综合反映诸多因素的变形抗力模型,由变形抗力模型得到的轧制力计算值与实际值的比较验证了模型可靠性,为热连轧纯钛卷精轧生产的工艺控制提供了有效依据。  相似文献   

11.
对退火后Ti6Al4V2Cr1.5Mo0.5Y钛合金在不同温度1223~1332 K和不同应变速率0.01~1.0 s~(-1)条件下压缩实验的热变形行为进行研究,绘制应力-应变曲线,及温度、速率、应力等参数之间的关系图,求解激活能,建立该合金的本构方程。结果表明:应变速率一定时,流变应力随温度的升高而降低;变形温度一定时流变应力随应变速率的增大而升高;合金的热激活能为286.1655 k J/mol。  相似文献   

12.
《铸造技术》2017,(3):513-516
采用Gleeble-1500热模拟试验机,在变形温度300~500℃、应变速率0.000 1~0.01 s~(-1)的变形条件下,对SiC颗粒增强7090铝基复合材料进行等温恒应变速率热压缩试验,对热变形行为及微观组织进行研究。结果表明:流变应力的大小与位错在SiC颗粒处的堆积程度有关;随着温度的降低或应变速率的升高,堆积程度越大,使得流变应力增大;当温度为300℃、应变速率为0.01 s~(-1)时,峰值应力达到最大为153.6 MPa;复合材料热压缩后SiC颗粒分布更加均匀;变形温度升高或应变速率降低都会使再结晶晶粒增大。  相似文献   

13.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

14.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的流变应力行为进行了研究。利用光学显微镜分析了合金在热变形过程中的组织演变及动态再结晶机制。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。升高变形温度以及降低应变速率,均有利于Cu-Cr-Zr合金的动态再结晶发生。从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q为392.5 kJ/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。  相似文献   

15.
在变形温度为1 050~1 140℃、应变速率为0.01~10 s 1和变形率为50%的条件下,采用Gleeble 1500热模拟机研究喷射成形FGH95合金的热压缩变形行为。结果表明:在合金热压缩变形初始阶段,流变应力随应变的增加迅速增大,达到峰值应力后逐渐减小,呈现明显的动态软化特征;合金流变应力随变形温度的升高和应变速率的降低而显著减小;应变速率为0.1~10 s 1时,合金峰值应变随温度升高而减小,并趋于平稳;而应变速率为0.01 s 1时,合金峰值应变在1 100℃出现极大值。考虑变形量对合金热压缩流变行为的影响,引入包含应变量的四次多项式函数对双曲正弦修正的Arrhenius方程进行改进,改进后的本构方程的流变应力预测值与实验值吻合较好,平均相对误差为3.64%。  相似文献   

16.
采用Gleeble-3500热模拟机测试了纯铌体材料的热压缩变形曲线,研究了200~700℃变形温度和0.001~10 s~(-1)应变速率条件下材料的流变应力行为和热压缩变形组织特征,结果表明:材料的流变应力随变形温度的升高和应变速率的降低而减小。随着变形温度的升高,材料中拉长的晶粒粗化,材料发生动态回复,材料的软化主要通过动态回复得以实现。进而通过修正的Arrhenius双曲正弦关系式,结合Zener-Hollomon参数因子推导了材料应变速率随材料变形温度、应力和激活能等参数变化的本构方程,采用简化的关系式拟合了不同变形温度下的材料流变应力应变曲线,拟合效果较好。  相似文献   

17.
《铸造技术》2017,(7):1581-1584
利用Gleeble-3008热模拟机研究了S32654超级奥氏体不锈钢在950~1 250℃、应变速率为0.001~10 s~(-1)条件下的热压缩变形行为,并建立该材料的热变形本构模型。结果表明:变形温度和应变速率对S32654超级奥氏体不锈钢的流变应力影响显著;流变应力随温度升高而减小,随应变速率增加而增大。温度高于1 150℃、应变速率小于0.1 s~(-1)时钢的应力曲线较平稳,在10 s~(-1)的高应变速率时流变曲线出现动态软化现象。S32654超级奥氏体不锈钢的热变形本构模型预测值与实验值吻合较好。  相似文献   

18.
利用应力应变曲线、热加工图,结合电子透射电子显微镜和背散射衍射技术研究在变形温度为350~510°C、应变速率为0.001~10 s-1时高钛6061铝合金的热变形行为。结果表明,该合金的热压缩变形流变峰值应力随变形温度的升高和应变速率的降低而降低;在实验参数范围内平均热变形激活能为185 k J/mol;建立了流变应力模型;该合金热变形时主要的软化机制为动态回复;根据材料动态模型获得了高钛6061铝合金的热加工图,最佳的热加工窗口温度为400~440°C,应变速率为0.001~0.1 s~(-1)。  相似文献   

19.
采用Gleeble-1500热模拟试验机对30%SiCP/2024A1复合材料在温度为623~773 K、应变速率为0.01~10 s-1变形条件下热变形流变行为进行了研究。由试验得出变形过程中的真应力真应变曲线,建立热变形本构方程和功率耗散图。结果表明,复合材料的流变应力随温度的升高而降低,随应变速率的增大而升高,说明该复合材料是一个正应变速率敏感的材料。该复合材料热压缩变形时的流变应力行为可采用Zener-Hollomon参数的双曲正弦形式来描述,热变形激活能Q为571.377 kJ/mol。高温高应变速率条件下的功率耗散系数大,该变形区发生了组织转变。  相似文献   

20.
在Thermecmastor-Z试验机上进行热压缩实验,在应变速率0.01~10 s~(-1)、变形温度900~1150℃条件下对TC27钛合金的变形行为进行研究并建立其本构方程。结果表明,该材料为温度和应变速率敏感材料。在变形初始阶段,流变应力随真应变的增加迅速增大,达到应力峰值后随真应变的增加缓慢降低,最后趋于相对稳定的状态。流变应力随温度的升高而降低,随应变速率的增加而增加。热压缩实验过程流变应力随应变速率和变形温度的变化规律可以用材料的本构方程来表征,变形激活能为Q=300 k J/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号