首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 531 毫秒
1.
对La1.7+xMg1.3-x(NiCoMn)9.3(x=0~0.4)贮氢合金相结构和电化学性能进行研究。结构分析表明,合金主要由LaNi5相(CaCu5结构)和其他相组成,如LaMg2Ni9相(PuNi3结构)或La4MgNi19相(Ce5Co19+Pr5Co19结构)。随着x的增加,LaMg2Ni9相消失并出现La4MgNi19相,而LaNi5相的含量则先增加后减小,且晶胞体积下降。电化学分析表明,合金电极只需4、5次循环即可活化;随着x的增加,最大放电容量逐渐增大,从x=0的330.9mA·h/g增加到x=0.4的366.8mA·h/g,但高倍率放电性能(HRD)和循环稳定性(S)则有所下降(x=0.4,HRD600=82.32%,S100=73.8%)。研究认为,HRD主要由合金电极表面的电催化活性控制,而循环稳定性的下降则是由于x=0.4合金中出现了具有较大吸氢量的Ce5Co19和Pr5Co19型结构相,导致吸氢膨胀率和晶间应力增大,使合金颗粒在吸放氢过程中较易粉化所致。  相似文献   

2.
稀土镁基贮氢电极合金的结构与电化学性能研究   总被引:23,自引:0,他引:23  
Rietveld全谱拟合表明,La_(0.7)Mg_(0.3)(Ni_(0.85)Co_(O.15)(x=2.5,3.0,3.5,4.0,4.5,5.0)型合金主相由(La,Mg)Ni_3和LaNi_5组成,随x的增加,(La,Mg)Ni_3相的丰度从48.4%(x=2.5)增加到78.2%(x=3.5)然后减小到12.2%(x=5.0);LaNi_5相的丰度当x=2.5—3.5时,保持基本不变(约20%),当x值增加到4.0时突然增加到71.9%,随着x增加,合金的吸氢量首先增加然后减小,合金放氢平台压力首先保持基本不变然后增加;合金电极的最大放电容量从228.3 mA·h/g(x=2.5)增加到395.6mA·h/g(x=3.5),然后又减小到226.8 mA·h/g(x=5.0),当放电电流密度I_d=1000 mA/g时,合金电极的高倍率性能从x=2.5时的53.5%提高到x=3.5时的85.8%然后又减小到x=4.5时的73.9%,随着x值的增加,合金电极的电化学反应动力学性能首先增加,达到一个最大值后,其动力学性能又有所下降。  相似文献   

3.
研究了退火温度对A287型La1.5Mg0.5Ni7.0合金的相结构和电化学性能的影响。结果表明:铸态合金由LaNi,相、LaMgNi4相、(La,Mg)Ni3相以及Gd2Co7型相组成,退火处理后,合金由Gd2Co7型相、Ce2Ni7型相和PuNi3型(La,Mg)Ni3相组成:随着退火温度升高,PuNi3型相的丰度减小,ce2Ni7型相的丰度增加,(La,Mg)Ni3相的a轴参数、c轴参数和晶胞体积均增大;经1073K保温24h退火后,合金电极具有最高的放电容量(391.2mAh/g),退火温度升高,合金的最大放电容量略有降低:合金电极的循环稳定性随着退火温度的升高不断提高,在1173K时合金电极经150次循环后其电极容量保持率C150/Cmax=82%;合金的高倍率放电性能(HRD)随退火温度升高略有增加,在1173K时,合金电极的HRD最好(HRD900=89.0%);交换电流密度I0、极限电流密度I1及氢扩散系数D随着退火温度的升高而增大。  相似文献   

4.
利用表面修饰提高AB5型贮氢电极性能   总被引:2,自引:2,他引:0  
朱建新  于波 《表面技术》2001,30(5):64-67
贮氢合金的表面性质对于它的电化学应用十分重要.AB5病型贮氢合金虽然具有活化性能好,容量在260mA·h/g~320mA·h/g是目前生产MH-Ni电池负极的主干材料.但是AB5,型贮氢合金在反复充放电过程中抗氧化和抗粉化的能力很差,导致放电容量的迅速降低.综述和比较了近年来对AB5,型贮氢合金表面处理的研究情况,分析了表面与电极性能的关系.  相似文献   

5.
采用感应熔炼和热处理的方法制备La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75?xFex(x=0~0.20)合金,并研究合金的相结构和电化学储氢性能。全部合金均为单一的具有CaCu5结构的LaNi5相,LaNi5相的晶格常数a和晶胞体积随着x值的增加而增大。最大放电容量随着x值的增加从319.0mA·h/g(x=0)降低到291.9mA·h/g(x=0.20)。在1200mA/g的电流密度下HRD值从53.1%(x=0)降低到44.2%(x=0.20)。合金电极的循环稳定性随着x值的增加而增强,这主要归因于合金抗粉化能力的增强。  相似文献   

6.
系统研究了La(Ni,Sn)x(x=5.0~5.4)无Co贮氢合金的化学计量比x对合金相结构和电化学性能的影响.XRD分析表明,除在x=5.4的合金中析出有少量的第二相(Ni)外,其它合金均为单相CaCu5型结构.随着x的增加,合金晶胞的c/a比值逐渐增大,并使合金的吸氢体积膨胀率(△V/V)明显减小,其原因主要与过计量比合金的晶体结构中存在有沿c轴定向排列的Ni-Ni“哑铃”对的结构特征有关.电化学测试表明,增大x会使合金的最大放电容量和高倍率放电性能(HRD)有所降低,但合金的循环稳定性得到显著提高.合金HRD值的减小主要是由于过计量比降低了合金电极的电催化活性,而合金循环稳定性的显著改善则主要归结于过计量比合金较小的吸氢体积膨胀及粉化倾向所致.  相似文献   

7.
La4-xPrxMgNi19(x=0~2.0)贮氢合金的相结构与电化学性能   总被引:1,自引:0,他引:1  
系统研究了Pr替代La后对La4-xPrxMgNi19(x=0~2.0)贮氢合金的相结构与电化学性能影响.结构分析表明,合金主要由Pr5Co19、Ce5Co19、CaCu5型物相组成.随着x的增加,合金中A5B19(Pr5Co19 Ce5Co19)型物相逐渐增多,同时各物相的晶胞参数(a,c)和晶胞体积(V)均呈线性减小.电化学测试表明,随着x的增加,合金活化性能显著降低,合金贮氢量先增加后减少,但合金循环寿命有所提高.合金的高倍率放电性能(HRD)随着x的增加先增加后减少,在x=1.2时有最大值(HRD900=94.77%).合金的HRD主要由合金表面的电催化活性所控制.  相似文献   

8.
研究了CeMn0.25Al0.25Ni1.5+x(x=0.0,0.3,0.5,0.7,0.9,1.1)超化学计量比合金的相结构和电化学性能。XRD、SEM和电化学性能测试结果表明:CeMn0.25Al0.25Ni1.5+x(x=0.0,0.3,0.5,0.7,0.9,1.1)合金主要含有六方的CeAl相和立方的CeNi相,合金的粒径随x值的增大而变大。Ni的超化学计量比添加能够大大提高合金的电化学活性,298K时,合金的放电容量从x=0.0时的118.3mAh/g提高到x=1.1时的200.7mAh/g;338K时,其放电容量随x值增大呈先增后减的趋势,x=0.0合金的放电容量为170.4mAh.g-1,当x=0.9时,放电容量出现最大值271.4mAh/g。合金电极的P-C-T曲线表明:随Ni超化学计量的增加,合金的平衡氢压平台斜率变小,宽度增大,平衡氢压升高,这可能是使合金电极放电容量增加的主要原因。  相似文献   

9.
采用感应熔炼和热处理的方法制备La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75?xFex(x=0~0.20)合金,并研究合金的相结构和电化学储氢性能。全部合金均为单一的具有CaCu5结构的LaNi5相,LaNi5相的晶格常数a和晶胞体积随着x值的增加而增大。最大放电容量随着x值的增加从319.0mA·h/g(x=0)降低到291.9mA·h/g(x=0.20)。在1200mA/g的电流密度下HRD值从53.1%(x=0)降低到44.2%(x=0.20)。合金电极的循环稳定性随着x值的增加而增强,这主要归因于合金抗粉化能力的增强。  相似文献   

10.
对LaMg_(0.25)Ni_(4.0-x)Co_(0.75)Al_x(x=0~0.3)系列合金进行了快速凝固处理(15m/s),系统研究了该条件下Al部分替代Ni对合金相结构和电化学性能的影响。XRD分析结果表明,合金主要由La4MgNi19相(A5B19型)和LaNi5相(CaCu5型)相组成,两相的晶胞体积(V)和LaNi5相的相丰度均随x的增加而增大。电化学性能测试表明,x的增加,会使合金的活化性能、最大放电容量以及高倍率放电性能(HRD)下降,但循环稳定性有明显改善,如100次循环后的容量保持率(S100)从x=0的59.07%提高到了x=0.3合金的85.99%。研究认为,合金中较高吸氢相(A5B19型)随x的增加而减少是导致合金电极最大放电容量下降的主要原因,而循环寿命的改善则是由于Al含量的增加降低了合金颗粒的吸氢体积膨胀率,同时减小了两种吸氢主相在吸放氢过程中产生的内应力,从而降低了合金电极的粉化程度所致。  相似文献   

11.
The structure and electrochemical properties of a new low cobalt hydrogen storage electrode alloys La1-xLixNi3.2Co0.3Al0.3(0≤ x ≤0.2) were investigated with a different additions of Li in replacement of La. With the increase of Li contents the maximum discharge capacity increases from 240 mAh·g -1 ( x =0) to 328.4 mAh·g -1(x=0.1) and the cycle stability is improved correspondingly. The capacity decay can remaiN28.6% ( x =0.2) after 230 charge/discharge cycles. The high rate discharge(HRD) ability of the alloys( x≤0.1) is improved and the best HRD is 34.1%( x =0.1) under the discharge current density 1200 mA·g -1 . It is found that the prepared alloys are basically composed of LaNi5 as matrix phase and LaNi3 as second phase( x ≤0.1). But the abundance of LaNi3 phase dramatically decreases with increasing x . When x =0.2, a new phase Al(NiCo)3 is formed.  相似文献   

12.
研究了超化学计量比对钛基贮氢合金相结构及电化学性能的影响。XRD及EDS分析表明,超化学计量比贮氢合金(Ti0.8Zr0.2)(V0.533Mn0.107Cr0.16Ni0.2)x(x=2,3,4,5,6)均主要由六方结构的C14型Laves相和体心立方结构的钒基固溶体相构成。随着x值的增大,两相的晶胞参数及晶胞体积均减小。电化学性能测试表明,当x的值在2-5范围内时,随着x值的增大,合金的最大放电容量、放电电位、高倍率放电性能(HRD)、循环稳定性、交换电流密度I0以及极限电流密度IL均提高。但继续增大x值后,除放电电位、高倍率放电性能和循环稳定性继续有所提高外,最大放电容量、交换电流密度I0以及极限电流密度IL均减小。此外,随着化学计量比的增大,合金电极的活化渐趋困难。  相似文献   

13.
La0.7Mg0.3Ni3.4-xCo0.6Mnx(x=0.0~0.5)合金主要由(La,Mg)Ni3相和LaNi5相构成,各相的晶胞参数和晶胞体积均随Mn含量的增加而增大。随Mn含量的增加,合金的放氢平衡压力从0.128MPa(x=0.0)下降到0.067MPa(x=0.5),导致最大吸氢量从x=0.0时的1.19%(质量分数,下同)逐渐增加到x=0.4时的1.38%。合金的最大放电容量随Mn含量的增加首先从330.4mAh/g(x=0.0)增加到360.6mAh/g(x=0.4),然后减小到346.9mAh/g(x=0.5)。随Mn替代量的增加,合金电极的高倍率放电能力先改善后降低,合金电极的表面反应阻抗先降低后升高,而氢的扩散系数先增加后减小,说明合金的电化学动力学性能首先提高然后降低。  相似文献   

14.
Al替代Ni对A2B7型贮氢电极合金性能的影响   总被引:1,自引:0,他引:1  
用冷坩埚磁悬浮熔炼方法制备La0.7Mg0.3(Ni0.85-xCo0.15Alx)3.4贮氢电极合金,采用XRD、三电极体系及SEM研究相结构、电化学性能及电极的表面状态。Rietveld法全谱拟合分析表明,该体系合金为多相结构,主相为ce2Ni7型六方相,还包括CaCu5型六方相、PuNi3型菱方相、MgCu2型立方相及BCr型正交相。Al元素为ce2Ni7型主相的有利形成元素,且Al替代Ni后,各组成相的晶胞体积均增加。P-C-T曲线显示随着Al替代量X的增加,合金放氢平台的平台区域变窄,平台压力降低,平台特性变差。电化学性能测试表明,随着X增加合金电极的最大放电容量降低,高倍率放电性能降低,循环稳定性明显提高。  相似文献   

15.
采用磁悬浮熔炼方法制备(La0.8Nd0.2)2Mg(Ni0.8.xCo0.1Mn0.1Alx)9(x=0,0.05,0.1,0.15)系列合金,系统研究了Al替代Ni对合金相结构、储氢性能及电化学性能的影响。XRD分析表明,铸态合金分别由LaNi。相及LaNi。相组成;P—C-T测试显示随着Al替代量的增加,在相同温度下,合金的最大吸氢量先增加后减少;电化学测试表明,随着x增加,合金电极的最大放电容量逐渐降低,最大放电容量由x=0时的347mA·h/g逐渐下降到x=0.15时的263mA·h/g。  相似文献   

16.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

17.
The La-Mg-Ni system PuNi3-type La0.5Ce0.2Mg0.3Co0.4Ni2.6-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys were prepared by casting and rapid quenching. The effects of the rapid quenching on the structure and electrochemical characteristics of the alloys were studied. The results obtained by XRD, SEM and TEM indicate that the as-cast and quenched alloys mainly consist of two major phases, (La,Mg)Ni3 and LaNi5, as well as a residual phase LaNi. The rapid quenching does not exert an obvious influence on the phase composition of the alloys, but it leads to an increase of the LaNi5 phase and a decrease of the (La, Mg)Ni3 phase. The as-quenched alloys have a nano-crystalline structure, and the grain sizes of the alloys are in the range of 20-30 nm. The results by the electrochemical measurements indicate that both the discharge capacity and the high rate discharge(HRD) ability of the alloy first increase and then decrease with the variety of quenching rate and obtain the maximum values at the special quenching rate which is changeable with the variety of Mn content. The rapid quenching significantly improves the cycle stabilities of the alloys, but it slightly impairs the activation capabilities of the alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号