首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
激光熔覆技术具有高的冷却速度、低的稀释率、涂层与基体冶金结合等优点,采用激光熔覆技术制备耐磨性和耐腐蚀好的高熵合金涂层是近几年高熵合金领域的研究热点之一。首先概括了激光熔覆技术制备的高熵合金体系及组织结构特征,大多高熵合金涂层以固溶相为主,少数合金涂层形成了非晶相,与熔炼制备高熵合金块体材料相比,涂层组织具有均匀、细小致密等特点。然后介绍了涂层的性能特征,涂层具有较高的硬度、良好的耐磨性,同时指明高耐磨性涂层不仅具有高的硬度,同时还需要具有一定的塑韧性。涂层合金中大多包含有Al、Cr、Si和Co等形成稳定氧化膜的元素,呈现优异的抗腐蚀性能。随后重点概述了合金元素(Al、Mo、V、Ti、B、Ni、Nb和Cu等)、熔覆工艺参数(激光功率、扫描速度和预制层粉末厚度)和热处理工艺对涂层组织结构和性能的影响规律。其中,熔覆工艺参数对涂层组织结构和性能的影响研究相对较少,将是未来研究的重点内容之一。最后对激光熔覆技术制备高熵合金涂层存在的问题和未来的研究方向做了展望。  相似文献   

3.
为了探究激光熔覆工艺对高熵合金组织和性能的影响,使用激光熔覆技术在Q235基材表面制备不同熔覆工艺下的高熵合金涂层. 利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪等对高熵合金涂层进行显微组织形貌的观察及物相分析;利用显微硬度计、摩擦磨损试验机对涂层的硬度及耐磨性进行研究. 结果表明,宏观形貌上,扫描速度一定时,激光功率增大,涂层宽度增加,涂层表面更加平整; 激光功率一定时,扫描速度增加,熔覆层的宽度减小,相结构主要由体心立方(BCC)和面心立方(FCC)组成,扫描速度的增大或激光功率的降低,涂层中的晶粒变细小,且部分区域的胞状晶有向树枝晶生长的趋势,涂层硬度明显高于基材,最高可以达到553 HV,耐磨性要优于基体.  相似文献   

4.
利用激光熔覆技术在45钢基体表面制备AlxCoCrCuFeNi(x=0.5,0.75,1.0,1.25,1.5)高熵合金涂层,研究了 Al元素含量对涂层组织结构、相组成、硬度及耐磨性的影响规律,重点分析了非平衡凝固快冷条件对高熵合金涂层形核的影响机制.AlxCoCrCuFeNi涂层具有BCC和FCC结构,随Al元素含量的增加FCC逐渐向BCC转变,高熔点Fe,Cr元素偏聚于BCC相中,Cu元素以富Cu相形式存在.涂层硬度随Al含量的增加而增大,合金体系为Al1.5CoCrCuFeNi时硬度达到最大为807.3HV0.2,耐磨性与硬度呈正相关性.激光熔覆非平衡快冷条件抑制了金属间化合物等有序相的形核、生长,有利于高熵合金固溶体相的形成.  相似文献   

5.
介绍了激光熔覆高熵合金涂层的硬度、耐蚀性、热稳定性及抗高温氧化性等性能。总结了合金元素对高熵合金涂层性能的影响。阐述了激光熔覆技术制备高熵合金涂层近些年的研究进展,并且指出了该技术制备涂层所存在的问题以及未来展望,以期制备出性能优异的高熵合金涂层。  相似文献   

6.
激光熔覆FeCoNiCrAl_2Si高熵合金涂层   总被引:8,自引:0,他引:8  
研究了激光熔覆后经600—1000℃退火处理的FeCoNiCrAl_2Si高熵合金涂层的组织和性能.结果表明,激光熔覆过程中的快速凝固条件有利于抑制涂层中金属间化合物的析出,涂层具有bcc结构,为有序固溶体,具有较高的硬度(900 HVo 5),相结构和硬度的高温稳定性好;涂层组织为树枝晶,Fe,Cr和Si在枝晶间富集,而Ni,Co和Al在枝晶中富集.随退火温度升高,Al和Si的偏析程度加剧,而其余元素的偏析变化不明显.EBSD研究显示熔覆态涂层的枝晶和枝晶间界面分布有大量小角度晶界,经600℃退火5 h后小角度晶界转变为大角度晶界,晶粒被细化.  相似文献   

7.
《硬质合金》2019,(4):321-327
高熵合金凭借特有的合金设计理念和优异的性能,展现了在工业生产中巨大的应用潜力,已成为研究学者关注的焦点。本文概括了高熵合金的设计准则和性能特性,分析了高熵合金相形成及其规律,阐述了合金元素对激光熔覆高熵合金耐磨性能研究进展,同时,探讨了热处理对激光熔覆高熵合金耐磨性能研究进展。展望了激光熔覆高熵合金涂层未来的研究发展方向。  相似文献   

8.
采用额定功率为3 kW的Nd:YAG固体激光器在45钢表面激光熔覆制备了FeCoNiCrAl高熵合金,通过光学显微镜(OM)、扫描电镜、显微硬度计和电化学工作站等研究了试样的组织、成分、硬度和耐腐蚀性能。结果表明:由于激光能量空间的非均匀分布及熔池与基体之间换热等的非均匀性,激光熔覆高熵合金与基体的交界面为波浪形;由于过冷度的差异,在熔覆区域靠近中心的组织为等轴晶,熔覆层与基体交界的组织为柱状枝晶;由于激光熔覆过程的快速加热和冷却综合影响,完全相变区组织为马氏体与残留奥氏体;由于激光熔覆晶粒细化和Al元素引起的晶格畸变等综合影响,熔覆区域硬度是基体的2~3倍。  相似文献   

9.
利用激光熔覆技术在AISI 304不锈钢表面制备了AlCoCrFeNiSix(x=0.1,0.2,0.3,0.4,0.5)高熵合金涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、透射电子显微镜(TEM)、维氏硬度计和电化学工作站等,分析了Si元素对AlCoCrFeNiSix高熵合金涂层微观组织和性能的影响。结果表明:AlCoCrFeNiSix高熵合金涂层由体心立方(BCC)固溶体晶粒构成。随着Si元素含量的增加,Si元素置换固溶使晶格收缩,晶粒逐步细化,纳米尺度球状AlNi相在晶粒内脱溶,少量的Cr23C6碳化物沿晶界析出。微观组织的演化导致涂层的显微硬度升高,最大硬度达到848.1 HV0.3。AlCoCrFeNiSix高熵合金涂层的热力学腐蚀倾向和均匀腐蚀速率均低于基材AISI 304不锈钢。Si元素的掺杂提高了钝化膜的修复能力和稳定性,使腐蚀机制从自催化发展的点蚀转变为晶间腐蚀。  相似文献   

10.
利用激光熔覆技术制备的高熵合金涂层已成为一种新兴的绿色清洁耐腐蚀涂层.为了最大程度发挥高熵合金涂层的耐腐蚀防护性能,需要探究激光熔覆高熵合金涂层耐腐蚀性能的影响因素及影响机理.首先阐述了高熵合金理论以及利用激光熔覆技术制备高熵合金涂层的优势,总结了高熵合金激光熔覆涂层优异耐腐蚀特性及耐腐蚀强化机理.重点综述了高熵合金元素组成、激光熔覆工艺参数、涂层后处理工艺以及服役温度4个因素,对高熵合金激光熔覆涂层耐腐蚀性能的影响规律与影响机理.高熵合金中适当添加Ni、Al、Ti等元素,在一定程度上可以提高涂层的耐腐蚀性,但是随着元素含量的进一步增加,由于高熵合金涂层的物相组成改变、晶格畸变严重、元素偏析加剧,可能导致涂层的耐腐蚀性能降低.适宜的激光加工参数可以使涂层具有较好的耐腐蚀性,原因在于涂层的缺陷较少、组织细密均匀.退火、激光重熔、超声冲击处理等涂层后处理工艺,通过改变高熵合金涂层的物相组成以及微观组织特征,来提高其耐腐蚀性.激光熔覆高熵合金涂层的服役环境温度越高,则腐蚀速率越快.最后,对激光熔覆高熵合金涂层的耐腐蚀性能强化方法进行了总结与展望.  相似文献   

11.
采用激光熔覆制备了FeCoCrNiSiBx高熵合金熔覆层,利用光学显微镜、扫描电镜、X射线衍射仪和显微硬度计研究微量硼元素(摩尔比x=0、0.02、0.04、0.06、0.08)对FeCoCrNiSiBx高熵合金熔覆层组织和硬度的影响。结果表明:无B高熵合金涂层组织主要为胞状晶。B的添加会促进枝晶的生成,逐渐形成鱼骨状树枝晶,但过量的B会破坏枝晶完整性,形成蠕虫状晶。此外,高熵合金熔覆层组织为FCC和BCC双相结构,B元素的添加会形成大量0.1~2.6 μm的Cr2B第二相,有助于提高熔覆层硬度,其中x=0.06时激光熔覆层的硬度最高,约为537 HV0.2。  相似文献   

12.
采用激光熔覆技术在H13钢表面制备了Al0.1CoCrFeNi高熵合金涂层。结果表明,涂层具有单相FCC结构,涂层与基材结合处组织为柱状晶,其他区域为等轴晶;涂层截面显微硬度最高可达560.2 HV0.5,约为基体硬度的2.5倍。涂层表现出明显优于基材的抗热冲击性能。在600 ℃和800 ℃下分别循环50次后涂层均未产生裂纹,但是在1000 ℃高温下循环7次后,基体断裂,而涂层及涂层与基体结合处并没有明显的裂纹。涂层的摩擦因数和磨损率均低于基材,分析表明涂层以氧化磨损为主,而基材的磨损机理为氧化磨损伴随疲劳磨损的混合机制。  相似文献   

13.
采用激光熔覆技术在304不锈钢表面制备了FeCoCrNi、FeCoCrNiNb等摩尔比高熵合金熔覆层,研究了Nb元素对熔覆层组织及性能的影响。采用XRD、SEM、EDS、纳米压痕测试和干滑动摩擦磨损实验等方法,详细分析了2种高熵合金熔覆层的相组成、组织演变、纳米硬度及耐磨性能。结果表明:FeCoCrNiNb高熵合金熔覆层相组成为fcc固溶体及富Nb-Laves相。FeCoCrNiNb熔覆层的纳米硬度(H)、弹性模量(E)、H/E和H3/E2分别为6.066 GPa、231.54 GPa、0.0262和0.0042,远高于FeCoCr Ni熔覆层的3.456 GPa、209.48 GPa、0.0165和0.000 94。随着纳米硬度的增加,FeCoCrNiNb熔覆层的摩擦系数和比磨损率也随之降低,分别为0.519和2.54×10-6mm3/(N·m)。综上所述,FeCoCrNiNb高熵合金熔覆层具有良好的纳米硬度和耐磨性。  相似文献   

14.
为了利用高速钢的优良性能,拓展其应用范围、降低使用成本,采用同轴送粉激光熔敷技术,在3mm厚的普通用不锈钢侧面制备高硬度的高速钢耐磨涂层,并对熔敷后的试样进行热处理。分析涂层的显微组织,研究热处理制度对涂层显微硬度的影响,测试涂层的耐磨性能。结果表明:涂层热处理前主要为细小等轴晶,组织为淬火马氏体+残留奥氏体+少量碳化物;热处理后主要为回火马氏体+少量残留奥氏体+大量析出碳化物;获得了最佳热处理参数,热处理后涂层硬度大幅度提高,约为基材的2倍;相同磨损条件下,耐磨涂层的磨损失质量仅为基体的1/5。  相似文献   

15.
采用激光熔覆方法在Q235钢上制备FeCoCrNiB0.5高熵合金涂层,利用XRD、SEM以及显微维氏硬度计等,研究时效温度对涂层的显微组织、相结构及硬度的影响。结果表明,涂层由FCC结构固溶体和M2B两相构成,并且相结构具有很好的高温稳定性。涂层经过800 ℃和900 ℃时效后,枝晶内有大量的颗粒状M2B相脱溶物析出;而1000 ℃时效后,枝晶间的M2B相显著粗化,涂层中树枝晶组织消失。FeCoCrNiB0.5高熵合金涂层的硬度为447 HV0.2,且涂层硬度随时效温度升高而逐渐降低。  相似文献   

16.
应用稀土及激光熔覆工艺制备钴基合金梯度涂层   总被引:5,自引:2,他引:5  
采用稀土变质及激光熔覆工艺在 2 0号钢基体上获得了钴基自熔合金梯度组织涂层。结果表明 ,2 0 4Co合金涂层组织为均匀的亚共晶 ,其组成相包括ε Co ,Co3 B ,M2 3 (C ,B) 6,Cr2 B及Co7W6化合物 ,平均硬度为HV10 70 ,比基体 (HV180 )高HV890 ,耐磨性与基体相比提高 1.5倍。在 2 0 4Co合金中加入 0 .6 %的稀土 ,可以获得梯度涂层。其组织由亚共晶向共晶连续过度 ,与前者相比 ,组成相增加了CeCr2 B4 ,最高硬度达HV12 0 4,比原合金高 12 .3%,耐磨性与基体相比提高近 2倍 ,比原合金提高了 2 5 %。  相似文献   

17.

利用激光熔覆技术在Q235基体表面制备CoCrFeNiTi0.8Nby(y = 0.25,0.5,0.75,1.0)涂层.采用光学显微镜、X射线衍射仪、扫描电子显微镜、能谱分析仪等方法分析涂层的相结构和微观组织等;用显微维氏硬度计、摩擦磨损试验机测试涂层的硬度与耐磨性能.结果表明,组织中呈现典型的树枝晶结构,加入Nb元素,涂层微观组织的尺寸减小,增加Nb元素含量时,高熵合金涂层的晶体结构由体心立方相(body-centered cubi,BCC)、少量的面心立方相(face-centered cubic,FCC)和Fe2(Ti,Nb)型的Laves相组成;在细晶强化、固溶强化和第二相强化的共同作用下提高了涂层的显微硬度;中间相的存在一定程度上可以阻碍犁削切削过程的进行,进而提高了涂层的耐磨性能;CoCrFeNiTi0.8Nb0.75涂层的硬度和耐磨性最好,硬度为710 HV,约为基体的4倍,涂层的磨损量最小,磨痕较为平整.

  相似文献   

18.
在低碳钢表面激光熔覆了钴基合金涂层(Co60)以及添加不同含量镍包WC(10%,20%,质量分数)的Co Ni/WC复合涂层,比较研究了几种涂层的组织与磨损性能.结果表明,Co60涂层主要由初生γ-Co枝晶及其间的共晶组织γ Cr23C6组成;Co Ni/WC涂层主要由未熔WC,γ-Co枝晶及细小的共晶组织组成,主要组成相有γ-Co,Cr7C3,Co3W3C和未熔WC等.添加WC改变了Co60涂层的定向枝晶生长模式,并细化了枝晶组织.且WC加入量提高,效果越明显.激光熔覆过程中WC颗粒与钴基合金界面间发生了扩散反应溶解,镍包覆有助于WC的残存.与Co60涂层相比,Co Ni/WC复合涂层的硬度与耐磨性均明显提高,Co 20%WC涂层的抗磨损性能提高1倍以上.  相似文献   

19.
采用CO2激光加工机,在Q235钢基体表面预涂覆加入不同Ti含量(1%~4%)的高碳Cr-Fe合金粉,制备熔覆涂层。采用OM、XRD及硬度测试、耐磨测试、腐蚀性能测试等手段,研究了Ti掺杂对涂层组织性能的影响。结果表明,加入Ti减小了熔覆涂层初生碳化物尺寸,使组织均匀细化,物相为α-Fe、CrFe、(Cr,Fe)7C3、Cr7C3、TiC和Cr23C6。当加入Ti量为2%时,涂层表面平均硬度达到最高917.8 HV0.2,磨损率为0.491 mg·mm-2,自腐蚀电流密度最小,为517.6μA·cm-2。  相似文献   

20.
利用机械合金化法在纯Cu表面原位制备NiCoFeCuCr高熵合金涂层,采用XRD、SEM和EDS对涂层的物相、显微组织及成分进行分析,研究球磨时间对涂层组织结构的影响,并分析了涂层的形成机理。结果表明:适当延长球磨时间有利于提高涂层的厚度和致密度,当球磨时间达到5h时,涂层最为致密,厚度约为40μm,且此时涂层与基体之间发生扩散而形成冶金结合。涂层的形成主要经历了合金粉末的镶嵌、冷焊、扩散和涂层的加工硬化4个阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号