首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graphite as well as the effect that the oxide scale will play on the following wear process are still yet in debate.In this work,oxidation behavior of a NiCrAl-graphite composite and the subsequent friction and wear performances were studied.Results indicate that graphite is stable in the composites after oxidation at T≤400 ℃ for 300 h,which contributes synergistically with the thin oxide film to self-lubrication.The friction coefficient is below 0.20 and the wear rate is ~1.43×10~(-5) mm~3 N~(-1) m~(-1).The composite has the highest friction coefficient and wear rate when it was suffered from the high temperature oxidation at 500 ℃.Once it was oxidized at 600 ℃,a glaze layer would develop during the subsequent sliding.It plays a positive role in improving tribological properties though in the absence of lubricant phase of graphite,with to be exactly the friction coefficient and wear rate reduced by 13% and 21%,respectively,in comparison with the case of oxidation at 500℃.  相似文献   

2.
Preparation of hyperthermal lithium complex grease   总被引:11,自引:0,他引:11  
Using 12-hydroxystearate, nonan-edioic acid and lithium hydroxide as thickener, refined mineral oil and synthetic oil as base oil, along with some structure improver, antioxidant and anti-wear extreme pressure additive, lithium complex grease was developed. The dropping point of the grease is 331℃, friction factor is 0. 025 - 0. 026 under 1.0 kN, especially above 220 ℃, its friction factor is 2/3 of those of urea-based greases and other high temperature greases. At the same time, it has good waterproof, anti-oxidation effect and anti-corrosion properties. The results of the field experiment proves that its working temperature is higher than 600℃, and it has reasonable working life in 800 ℃.  相似文献   

3.
In this paper, simulations of deep drawing tests at elevated temperatures were carried out with experimental validation. The aim of this work was to study the effect of process parameters on formability and mechanical properties of aluminum alloy 7075 in hot stamping process.Process parameters, including blank temperature, stamping speed, blank holder force and friction coefficient, were studied. Stamping tests were conducted at temperatures between 350 and 500 ℃, blank holder force between 0 and 10 kN, stamping speed between 50 and 150 mm·s~(-1), and friction coefficient between 0.1 and 0.3. Based on the analysis, it is shown that thickness homogeneity could be improved when the blank is formed at lower temperature,lower blank holder force and lower friction coefficient.Formability could be improved when the blank was well lubricated at about 400 ℃. Formability at stamping speed 50 mm·s~(-1) is far better than those at other speeds. The mechanical property analysis shows that the hot stamping process could make the formed part to obtain high quality.  相似文献   

4.
Fine-grained magnesium alloys strengthened by quasicrystalline particles were easily developed by thermomechanical process for Mg-Zn-Y-Zr alloys. The microstructure evolution of Mg-Zn-Y-Zr alloys hot rolled with different reductions at different temperatures was studied. Tensile tests and fracture observation were carried out to study the mechanical properties of this alloy. The thin magnesium sheets hot rolled at 380 ℃ exhibit better combination of high strength and ductility than that hot rolled at lower temperature. The results show that the grains become equiaxed and uniform as compared with those of the extruded materials because of recrystallization and repeated heating between rolling passes. It is also found that with the increasing rolling temperature and strain the I-phase particles become much smaller and are homogeneously distributed in the matrix, which enhances both strength and ductility.  相似文献   

5.
Cu-based powder metallurgy brake materials are used for aircraft widely and successfully.The characteristics of worn surface of Cu-based powder metallurgy brake materials for aircraft after working under service condition were studied,and two main wear mechanisms were discussed.The results show that the main components of worn surface are graphite,SiO2,Fe,Cu and oxide of Fe(Fe3O4 and FeO);the worn surface can be divided into three zones:severe wear zone,mild wear zone,and low wear zone; fatigue wear and grain wear are the main wear mechanisms of Cu-based materials.Some debris kept between brake discs reduce the wear rate to a certain extent by taking part in the regeneration of friction film.  相似文献   

6.
The influence of temperature on the hydrogen diffusion behavior in X80 pipeline steel during stacking for slow cooling was studied using electrochemical penetration method, the temperature field and the hydrogen diffusion in this pipeline steel during stacking for slow cooling were simulated by ABAQUS finite element method(FEM) software. The results show that in this process there is a reciprocal relationship between the natural logarithm of hydrogen diffusion coefficient and temperature. The cooling rate decreases gradually with the increase of steel plate thickness. The hydrogen content is higher at high temperature(500–400 °C) than that in low temperature region(300–100 °C). The FEM simulation results are consistent with the experimental ones, and the model can be used to predict the hydrogen diffusion behavior in industrial production of X80 pipeline steel.  相似文献   

7.
In this study,how to improve the stability of reduced manganese oxide ore was discussed by investigating reoxidation conditions and kinetics mechanism in the cooling process of manganese dioxide ore reduced by biomass.The effects of the temperature and time,chip size of biomass,raw materials thickness and different additives on stability of the products were determined.The valence variation of manganese in ore and the reoxidation kinetics of reduced products were studied.The results show that decrease of reduction temperature and time,and increase of raw materials thickness and little H2SO4 additive are favorable for the stability of the reduced products.The kinetics mechanism of the reoxidation is controlled by diffusion with dynamic apparent activation energy of E1=25.10 kJ·mol-1,and conformation of manganese in the process is changed from MnO to Mn3O4.  相似文献   

8.
By use of X-ray diffractometry and scanning electron microscope(SEM),the friction and wear results obtained from MM-1000 dynamometer tests of CVI pitch/resin C/C composites were analyzed.By investigating the factors that affected the friction and wear properties,such as matrix carbon,applcation environment,graphitization degree and brake pressure,etc,friction and wear mechanism of carbon materials were probed.The results indicate that pitch densified CVI initially treated composite is more graphitizable with its graphitization degree up 59 62%,and which results in uniform small debris easier to generate,more smooth friction curves with the coefficient of 0.3-0.4 and relatively higher wear and mass loss,compared with CVI/resin C/C composites.It was further proved by SEM observation that tribological behavior of C/C composite was system dependent.Factors determining the friction and wear properties such as the size of debris and its influence on friction and wear,brake pressure,graphization degree and debris bilm formation interacted and affected each other.The friction and wear mechanism of C/C composites under different high temperature treatments needs further research.  相似文献   

9.
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.  相似文献   

10.
In order to develop a new type of contact cable with high strength and high electrical conductivity, Cu-Cr alloy series were selected as materials and Cu-Cr alloy castings were produced by means of directional solidification continuous casting (DSCC) process. The results show that the fibrillar strengthening phase, 13-Cr, orderly arranges among the copper matrix phase along the wire direction; and a microstructure of in-situ composite forms, which retains the basic property of good conductivity of the copper matrix and meanwhile obtains the strengthening effect of [3-Cr phase. The production technology as well as the mechanical property, electrical property, and synthetic property of the in-situ composite contact cables was discussed.  相似文献   

11.
A novel Cu-based P/M aircraft brake material was prepared and the effects of sintering pressure and temperature on microstructure and tribological characteristic were investigated. For the constant sintering temperature, when the sintering pressure increases from 0.5 MPa to 1.5 MPa, the porosity, wear loss and friction coefficient decrease remarkably. When the sintering pressure increases from 1.5 MPa to 2.5 MPa, the porosity further decreases but in a little degree and wear behaviors are improved slightly. However, once the sintering pressure is larger than 2.5 MPa, it has no obvious effect on microstructure and tribological characteristic. For the constant sintering pressure, when the sintering temperature increases from 900 ℃ to 930 ℃, the sintered density remarkably-increases, and wear behaviors are obviously improved. For further increasing sintering temperature to l 000 ℃, the density keeps on increasing, but wear behaviors change slightly.  相似文献   

12.
简波  杜随更  傅莉 《焊接学报》2006,27(6):21-24
搅拌摩擦焊接在工业生产中应用的主要问题之一,是焊接硬化状态材料时接头强度系数较低.简要分析了焊接热对接头强度的影响,提出了在搅拌摩擦焊接过程中进行强制冷却的工艺方法.对比了强制冷却对紫铜搅拌摩擦焊接头表面状况、硬度分布和接头性能的影响,建立了强制冷却搅拌摩擦焊接过程中焊接区温度的近似表达式.结果表明,在紫铜搅拌焊接过程中进行强制冷却,可以降低焊接过程中焊缝及热力影响区变形金属的温度,减小接头软化的程度和范围,提高搅拌摩擦焊接接头的性能.采用转速1 500 r/min、移动速度0.3 mm/s的强制冷却的工艺方法,得到的紫铜搅拌摩擦焊接头抗拉强度达269 MPa.  相似文献   

13.
戎雪玲  杨晋  姜峰 《锻压技术》2016,(6):100-103
基于锻造操作机夹持热工件的实际工况,将钳口材料ZG310-570和HT350与几种常见的锻件材料组成摩擦副,通过对M-200摩擦磨损试验机进行改造,测试了各摩擦副在常温下的摩擦因数以及高温热试样块温度在降低过程中的各摩擦副间摩擦因数。试验分析表明,试样环ZG310-570与各材料间的摩擦因数小于试样环HT350与各材料间的摩擦因数;随着热试样块温度的降低各摩擦副间的摩擦因数增大。因此,在设计夹持装置时,钳口与热工件间的摩擦因数以热试样块高温下的摩擦因数来选取比较合理。  相似文献   

14.
填料粒度对汽车制动摩擦材料性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
罗玲  姚冠新  陶飞 《表面技术》2016,45(2):97-102
目的研究填料粒度对树脂基汽车制动摩擦材料性能的影响。方法选取硅酸锆、氧化铝、石墨和蛭石作为填料,树脂基摩擦材料采用热压成型法制成,在X-DM摩擦试验机上进行摩擦磨损试验。采用正交试验法,对填料粒度不同的树脂基摩擦材料的摩擦因数标准差和高温磨损率进行极差分析,以获得填料粒度组合最佳的摩擦材料配方。采用扫描电子显微镜对该材料和未经过粒度优化材料在不同温度下的磨损表面形貌进行对比分析。结果随着硅酸锆和氧化铝颗粒尺寸的增大,摩擦因数和高温磨损率均增大,但硅酸锆和氧化铝颗粒尺寸过大或过小都会造成摩擦因数的稳定性变差;石墨粒度变化对摩擦因数的稳定性影响不大,随着石墨颗粒尺寸的增大,高温磨损率减小;随着蛭石颗粒尺寸的增大,摩擦因数的稳定性变差,且高温磨损率增大。结论硅酸锆和氧化铝粒度在320~400目之间,石墨粒度在100~200目之间,蛭石颗粒尺寸小于80目为最佳的粒度组合,制成的摩擦材料的摩擦磨损性能最佳,试样的摩擦因数稳定,高温磨损率较低,抗热衰退性能好。  相似文献   

15.
在25,250,350和450℃高温摩擦磨损实验条件下,对两种不同铁含量的Cu基摩擦材料进行高温氧化行为及耐磨性研究。结果表明:Fe在Cu基体中的尺寸、分布影响Cu基摩擦材料的高温抗氧化性和耐磨性,随实验温度升高,Cu基摩擦材料试样中Cu氧化产物为Cu2O,Fe从Fe2O3转变为Fe3O4,金属氧化膜厚度逐渐增加;Fe以小尺寸、均匀分布于Cu基体时,更有利于提高Cu基体整体的抗氧化性能,在350~450℃可形成稳定的氧化膜降低粘着磨损,展现出了较好的高温耐磨性能;而Fe以较大尺寸分布在Cu基体中时,则使Cu基体出现氧化不均匀现象,不利于高温耐磨性能的提高。  相似文献   

16.
虽然有些情况下使用气体润滑,但一般认为润滑材料主要包括液体和固体润滑材料。根据使用环境和润滑材料特性,润滑材料可以划分为许多类。特种润滑材料顾名思义是指具有比常规润滑材料更为优异特性的润滑材料。通过分子结构、体相结构设计和复合提升润滑特性一直是制备新型润滑材料的主要途径。对于液体润滑剂和有机分子薄膜,常常将新型分子结构设计和摩擦化学机理探讨结合在一起以发展润滑材料。比如,作为可能的新型润滑剂,离子液体的评价主要通过考察不同官能团和摩擦过程中发生的摩擦化学机制,以指导合成新型离子液体。有机薄膜的摩擦学特性强烈依赖于薄膜分子结构和构造结构。对于经典固体润滑材料,常考虑体相结构设计和复合方法提高或调整摩擦磨损特性。类富勒烯结构的出现赋予类金刚石薄膜更高的弹性和更低的摩擦系数,而金属掺杂能够降低内应力并在有些情况下改善薄膜环境敏感度。由于合成新型聚合物润滑材料比较困难,因此,共混和无机纳米颗粒的添加成为制备良好力学性能和耐磨损特性聚合物润滑材料所采取的方法。高温润滑材料,特别是从室温到高温(1000℃及以上)均具有良好润滑特性的润滑材料的发展依然是一个大的挑战。具有高温稳定性的稀土和陶瓷填充金属是目前设计制备高温润滑材料的主流方法。通过摩擦磨损特性的考察可以获得对润滑材料的表观判断,而基于磨损表面反应物质的分析对摩擦过程中发生在表面的摩擦物理化学机制的探究则是了解润滑材料服役特性和机制的主要手段,也是设计制备新型润滑材料依赖的主要思想来源。  相似文献   

17.
电子束改性40Cr材料表面微动摩擦磨损性能分析*   总被引:2,自引:0,他引:2  
利用强流脉冲电子束技术对齿轮常用材料40Cr进行表面改性,利用光学显微镜、X射线衍射仪、粗糙度仪、显微硬度仪和摩擦摩损仪对比分析40Cr材料表面电子束改性前后的材料表面形貌、组织和力学性能及其对摩擦磨损性能的影响。结果表明:40Cr材料经电子束处理后,表面粗糙度增加,截面硬度在表层1mm内增加,材料表层组织结构由于重熔快冷发生变化而产生残余奥氏体,硬度和组织的变化都起到改善材料微摩擦磨损性能的作用。电子束改性样品摩擦因数在实验初期相对稳定,随着摩擦磨损试验的进行,摩擦因数急剧升高并接近于电子束改性前的样品。微动摩擦性能得到提高,磨损量相当于改性前的26.4%,降低近4倍。  相似文献   

18.
Based on the imperative social demand for lighter vehicles, lightweight materials such as aluminum alloys are expected to replace conventional steels in many automotive applications. In automotive parts manufacturing, most of the components produced in conventional stamping operations are geometrically complex as the blanks are subjected to both stretching and drawing deformations. However, aluminum alloys have intrinsic drawbacks, such as the inferior formability of these materials, although the effects of the weight reduction in terms of performance are highly promising. In an effort to improve the formability of aluminum alloy sheets, the surface friction stir process is proposed in this study. This process locally modifies the surface of automotive aluminum alloy sheets via stirring and advancing on the surface of the sheet, similar to the Friction Stir Welding (FSW) process that utilizes a probe without a pin. When the surface of the sheet is modified locally by stirring, dynamic recrystallization due to the severe shear deformation along with heat resulting from the friction occur due to changes in the micro-structure and mechanical properties in the stirred zone, while the dislocation density and grain size refinement are curtailed. In this work, the drawability performance of AA5052-H32 sheets (thickness 1.5 mm) that were welded using the surface friction stir process was experimentally and numerically investigated in cylindrical cup drawing tests. When applied to AA5052-H32 automotive sheets, the surface friction stir process improved the drawability of the entire aluminum alloy sheet. For numerical simulations, the non-quadratic anisotropic yield function Yld2000-2d was employed along with isotropic hardening, while the formability was evaluated by utilizing theoretical forming limit diagrams (FLD) based on Hill's bifurcation and M-K theories.  相似文献   

19.
制动摩擦材料的研究与发展现状   总被引:1,自引:1,他引:0  
摩擦材料的性能是影响机械设备工作可靠性的重要因素,研究摩擦材料对改善制动系统的制动效能具有重要意义。从制动摩擦材料的分类与制备、摩擦磨损性能与机理以及性能预测三个方面,对制动摩擦材料的研究与发展现状进行了调研。首先,介绍了制动摩擦材料包括金属基、半金属基、非金属基三种类型,阐述了各种摩擦材料常用的制备方法及应用领域;其次,分析了制动压力、制动速度等工况对摩擦磨损性能的影响规律及其作用原理,简述了常见的磨损形式,并结合无石棉闸瓦的SEM微观形貌,重点探讨了粘着磨损、磨粒磨损、切削磨损、疲劳磨损与热磨损各自的产生机理及其主要影响因素。此外,归纳了摩擦材料性能的预测与分析方法,并以BP神经网络为例介绍了人工智能技术在摩擦学性能预测中的应用。最后,指出了陶瓷摩擦材料与功能性摩擦材料是未来摩擦材料的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号