首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The corrosion behavior of eight Fe-Nb-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S atmospheres. The corrosion kinetics followed the parabolic rate law for all alloys at all temperatures. The corrosion rates were reduced with increasing Nb content for Fe-x Nb -3Al alloys, the most pronounced reduction occurred as the Nb content increased from 30 to 40 wt.%. The corrosion rate of Fe-30Nb decreased by six orders of magnitude at 700°C and by five orders of magnitude at 800°C or above by the addition of 10 wt.% aluminum. The scales formed on low-Al alloys (3 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with Al dissolved near the outer-/inner-layer interface) and an inner complex layer of FexNb2S4(FeNb2S4 or FeNb3S6), FeS, Nb3S4 (only detected for Nb contents of 30 wt.% or higher) and uncorroded Fe2Nb. No oxides were detected on the low-Al alloys after corrosion at any temperature. Platinum markers were found to be located at the interface between the inner and outer scales for the low-Al alloys, suggesting that the outer scale grew by the outward transport of cations (Fe and Al) and the inner scale grew by the inward transport of sulfur. The scales formed on high-Al alloys (5 wt.% Al) were complex, consisting primarily of Nb3S4, Al2O3 and (Fe, Al)xNb2S4, and minor amounts of (Fe, Al)S and uncorroded intermetallics (FeAl and Fe2Nb). The formation of Nb3S4 and Al2O3 blocked the transport of iron through the inner scale, resulting in the significant reduction of the corrosion rates.  相似文献   

2.
High-purity nickel has been reacted with 96% O2+4% SO2 at 700–900°C. The reaction has been studied at 700°C as a function of the total gas pressure (0.06–1 atm) and at 1 atm as a function of temperature (700–900°C). The reaction mechanism changes with the effective pressure of p(SO3) in the gas. When NiSO4 (NiO + SO3 = NiSO4) is formed on the scale surface, the scale consists of a two-phase mixture of NiO + Ni3S2; in addition, sulfur is enriched at the metal/scale interface. A main process in the reaction is rapid outward diffusion of nickel through the Ni3S2 phase in the scale; the nickel reacts with NiSO4 to yield NiO, Ni3S2, and possibly NiS as an intermediate product. When NiSO4 cannot be formed, the scale consists of NiO, and small amounts of sulfur accumulate at the metal/scale interface. It is proposed that the reaction under these conditions is primarily governed by outward grain boundary diffusion of nickel through the NiO scale, and in addition, small amounts of SO2 migrate inward through the scale—probably along microchannels.  相似文献   

3.
Cr2AlC coating was deposited at 370 and 500 °C by D.C. magnetron sputtering from an as-synthesized bulk Cr2AlC target. The phase composition and preferential orientation of the coating were investigated using XRD, and the microstructure of the coating was characterized by TEM. Results indicated that Cr2AlC coating with a strong (110) preferential orientation could be obtained. The coating microstructure was clearly affected by the deposition temperature. At 370 °C, the deposited coating possessed a triple-layered structure with an α-(Cr, Al)2O3 inner layer, an amorphous intermediate layer and a crystalline Cr2AlC outer layer. However, the coating deposited at 500 °C had a single-layered structure consisting of crystalline Cr2AlC layer. The growth mechanism of the Cr2AlC coating at different deposition temperatures is discussed.  相似文献   

4.
Ni-20Cr alloys with 2, 3.5, and 5 wt.% Al have been preoxidized up to 100 hr at 1000°C in dry H2, in H2/23% H2O and in air and subsequently exposed to an H2/5% H2S atmosphere at 750° C. During the preoxidation treatment different types of oxide scales were formed which affect the sulfidation protection in different ways. Optimum results were obtained for alloys with 3.5 and 5 wt.% Al after 20 hr exposure to dry H2 at 1000°C. A thin Al2O3 scale is formed which decreases the sulfur attack by more than one order of magnitude. Preoxidation conditions for Ni-20Cr-2Al alloys in H2 and for Ni-20Cr-2Al and Ni-20Cr-3.5Al in H2/H2O were observed to be less effective. No improvement was found for preoxidation in air or for Ni-20Cr-5Al alloys preoxidized in H2/H2O.  相似文献   

5.
The corrosion behavior of 11 Fe-Mo-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S mixed-gas environments. With the exception of Fe-10Mo-7Al, for which breakaway kinetics were observed at higher temperatures, all alloys followed the parabolic rate law, despite two-stage kinetics which were observed in some cases. A kinetics inversion was observed for alloys containing 7 wt.% Al between 700–800°C. The corrosion rates of Fe-20Mo and Fe-30Mo were found to be reduced by five orders of magnitude at all temperatures by the addition of 9.1 or higher wt.% aluminum. The scales formed on low-Al alloys (5 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with some dissolved Al) and a complex inner of Al0.55Mo2S4, FeMo2S4, Fe1.25Mo6S7.7, FeS, and uncorroded FeAl and Fe3Mo2. Platinum markers were always located at the interface between the inner and outer scales for the low-Al alloys, indicating that outer-scale growth was due mainly to outward diffusion of cations (Fe and Al), while the inner scale was formed primarily by the inward flux of sulfur anions. Alloys having intermediate Al contents (7 wt.%) formed scales that consisted of FeS and Al2O3. The amount of Al2O3 increased with increasing reaction temperature. The high-Al-content alloys (9.1 and 10 wt.%) formed only Al2O3 which was responsible for the reduction of the corrosion rates.  相似文献   

6.
Previous work showed that MoSi2 diffusion coatings formed by a NaF-activated pack cementation process did not pest. A Na–Al-oxide by-product layer resulting from the NaF activator formed a Na-silicate layer to passivate MoSi2. Superficial NaF layers were then used to prevent the pesting of MoSi2 diffusion coating that were otherwise susceptible to pest disintegration. In this study, the use of superficial alkali-salt layers to prevent the accelerated oxidation of bulk MoSi2 at 500°C is investigated more broadly. The application of Na-halide, KF, LiF, Na2B4O7, or Na-silicate layers prior to oxidation prevented accelerated oxidation and pesting for at least 2000 hr at 500°C in air. The formation of a fast-growing, Na-silicate layer passivates MoSi2. The MoO3 that forms during oxidation absorbs sodium by intercolation to form stable Na-molybdate precipitates. Na2B4O7, Na-silicate, LiF, and KF prevented accelerated oxidation at 500°C by a similar mechanism. The application of alkali-halide salts is a simple, effective solution to prevent the accelerated oxidation and pesting of MoSi2.  相似文献   

7.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

8.
State-of-the-art conventional thermal-barrier coatings consist of a thermalinsulating, partially-stabilized ZrO2 top coat and a bond coat. In this study, a continuous alumina-diffusion-barrier layer was deposited and interposed between the top coat and bond coat by chemical-vapor deposition (CVD). Both the conventional and the experimental TBC systems were cyclically tested at 1000°C, 1050°C, 1100°C, and 1150°C to evaluate and compare oxidation, performance, and fracture behavior. Introduction of the intermediate CVD-Al2O3 layer effectively suppressed the oxidation rate of the bond coat and sufficiently altered its oxidation behavior. The thermal-cyclic life of TBCs was improved by the new system. The failure of the ZrO2-8 wt.% Y2O3/CVD-Al2O3/Ni-22Cr-10Al-1Y TBC specimens was observed to propagate mainly along the lamellar splats of the top coat, and secondarily along the top coat/CVD-Al2O3 interface.  相似文献   

9.
Wang  Chaur-Jeng  He  Tien-Tsuo 《Oxidation of Metals》2002,58(3-4):415-437
Three types of stainless steel (430, 304, and 310) with a coating of NaCl, NaCl/AlCl3, or NaCl/Al2(SO4)3 are exposed at 750 and 850°C. Results show that NaCl has a major effect on corrosion and sulfur plays an important role in intergranular corrosion. After high-temperature exposure with a 100% NaCl coating, the morphologies of alloys 304 and 310 show typical uniform subscale attack the depths of attack increasing with temperature, while alloy 430 showed a planar attack. Alloy 310 has the highest chromium content and has the least metal loss. After high-temperature exposure with a NaCl/AlCl3 coating, the corrosion morphologies and depths of attack are similar to those associated with an NaCl coating, but only voids are larger in the subscale. When coated with NaCl/Al2(SO4)3, the alloys are attacked simultaneously by sulfur and chlorine at 750°C, resulting in a typical sulfur-attack intergranular corrosion. However, as the temperature increases to 850°C, the corrosion morphology changes to a uniform subscale attack.  相似文献   

10.
The lattice and grain-boundary diffusion coefficients of18O atP O 2=0.1 atm and at 900°C were determined in massive Cr2O3 and in Cr2O3 scales which were grown on a Ni–30Cr alloy. The diffusion profiles were established by SIMS and analyzed considering two domains in the case of polycrystalline Cr2O3 (massive or scales), the first one relative to apparent diffusion and the second to grain-boundary diffusion. A ridge model is proposed for Cr2O3 scales to modify thef value, fraction of sites associated with the grain boundary. With such a model,f is equal to 0.0006 and 0.0005 for the scales formed during 15 hr and 165 hr, respectively. The oxygen-lattice diffusion coefficients determined in Cr2O3 scales are in very good agreement with those in massive Cr2O3. With some assumptions, our diffusion data lead to a calculated parabolic oxidation constant equal to the experimental one. Scale growth occurs by countercurrent diffusion of oxygen and chromium, mainly by grain-boundary diffusion.  相似文献   

11.
Wang  C.-J.  Chang  Y.-C.  Su  Y.-H. 《Oxidation of Metals》2003,59(1-2):115-133
The high-temperature corrosion behavior of Fe-30.1Mn-9.7Al-0.77C alloy initially coated with 2 mg/cm2 NaCl/Na2SO4 (100/0, 75/25, 50/50, 25/75 and 0/100 wt.%) deposits has been studied at 750°C in air. The result shows that weight-gain kinetics in simple oxidation reveals a steady-state parabolic rate law after 3 hr, while the kinetics with salt deposits all display multi-stage growth rates. The corrosion morphology of the alloy with 100% Na2SO4 coating is similar to that of simple oxidation. NaCl acts as the predominant corrosion species for Fe-Mn-Al-C alloy, inhibiting the formation of a protective oxide scale. For the alloy coated with over 50% NaCl in salts, NaCl induces selective oxidation of manganese and results in the formation of secondary ferrite in the alloy substrate as well as void-layers with different densities of voids layer by layer in the secondary-ferrite zone.  相似文献   

12.
The TiAl3-Al composite coating on orthorhombic Ti2AlNb based alloy was prepared by cold spray. Oxidation in air at 950 °C indicated that the bare alloy exhibited poor oxidation resistance due to the formation of TiO2/AlNbO4 mixture and intended to scale off at the TiO2 rich zone. A nitride layer about 2 µm was formed under the oxide layer. The oxygen invaded deeply into the alloy and caused severe microhardness enhancement in the near surface region. The TiAl3-Al composite coating exhibited parabolic oxidation kinetics and showed no sign of degradation after oxidized up to 1098 h at 950 °C in air under quasi-isothermal condition. No scaling of the coating was observed after oxidized at 950 °C up to the tested 150 cycles. The major oxide in the oxidized coating was Al2O3. The AlTi2N, TiAl and small amount of TiO2 were also observed in the oxidized coating. The EPMA and microhardness tests showed that inward oxygen diffusion was prevented by the interlayer, which was formed between the composite coating and the substrate during heat-treatment. Microstructure analyses demonstrated that the interlayer play a major role in protecting the substrate alloy from high temperature oxidation and interstitial embrittlement.  相似文献   

13.
The corrosion behavior of pure Nb and three Nb Al alloys containing 12.5, 25, and 75 at.% Al was studied over the temperature range of 800–1000°C in a H2/H2S/H2O gas mixture. Except for the Nb-12.5Al alloy consisting of a two phase structure of -Nb and Nb3Al, other alloys studied were single phase. The corrosion kinetics followed the parabolic rate law in all cases, regardless of temperature and alloy composition. The parabolic rate constants increased with increasing temperature, but fluctuated with increasing Al content. The Nb-75Al alloy exhibited the best corrosion resistance among all alloys studied, whose corrosion rates are 1.6–2.2 orders of magnitude lower than those of pure-Nb (depending on temperature). An exclusive NbO2 layer was formed on pure Nb, while heterophasic scales were observed on Nb-Al alloys whose compositions and amounts strongly depended on Al content and temperature. The scales formed on Nb-12.5Al consisted of mostly NbO2 and minor amounts of Nb2O5, NbS2, and -Al2O3, while the scales formed on Nb-25Al consisted of mostly Nb2O5 and some -Al2O3. The scales formed on Nb-75Al consisted of mostly -Al2O3 and Nb3S4 atT 900°C, and mostly -Al2O3 , Nb3S4 and some AlNbO4 at 1000°C. The formation of -Al2O3 and Nb3S4 resulted in a significant reduction of the corrosion rates.  相似文献   

14.
We attempted the room-temperature fabrication of Al2O3-based nanodiamond (ND) composite coating films on glass substrates by an aerosol deposition (AD) process to improve the anti-scratch and anti-smudge properties of the films. Submicron Al2O3 powder capable of fabricating transparent hard coating films was used as a base material for the starting powders, and ND treated by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) was added to the Al2O3 to increase the hydrophobicity and anti-wear properties. The ND powder treated by PFOTES was mixed with the Al2O3 powder by ball milling to ratios of 0.01 wt.%, 0.03 wt.%, and 0.05 wt.% ND. The water contact angle (CA) of the Al2O3-ND composite coating films was increased as the ND ratio increased, and the maximum water CA among all the films was 110°. In contrast to the water CA, the Al2O3-ND composite coating films showed low transmittance values of below 50% at a wavelength of 550 nm due to the strong agglomeration of ND. To prevent the agglomeration of ND, the starting powders were mixed by attrition milling. As a result, Al2O3-ND composite coating films were produced that showed high transmittance values of close to 80%, even though the starting powder included 1.0 wt.% ND. In addition, the Al2O3-ND composite coating films had a high water CA of 109° and superior anti-wear properties compared to those of glass substrates.  相似文献   

15.
The corrosion behavior of two Ni-Al alloys and four Ni-Nb-Al alloys was studied over the temperature range of 600° C to 1000° C in a mixed-gas of H2/H2O/H2S. The parabolic law was generally followed, although linear kinetics were also observed. Multiple-stage kinetics were observed for the Ni-Al alloys. Generally, the scales formed on Ni-13.5Al and Ni-Nb-Al alloys were multilayered, with an outer layer of nickel sulfide with or without pure Ni particles and a complex inner scale. The outer scale became porous and discontinuous with increasing temperature. Very thin scales formed on Ni-31Al. The reduction in corrosion rate with increasing Al content is ascribed to the formation of Al2O3 and Al2S3 in the scale. Platinum markers were found at the interface between the outer and inner scales.  相似文献   

16.
Novel YSZ (6 wt.% yttria partially stabilized zirconia)-(Al2O3/YAG) (alumina-yttrium aluminum garnet, Y3Al5O12) double-layer ceramic coatings were fabricated using the composite sol-gel and pressure filtration microwave sintering (PFMS) technologies. The thin Al2O3/YAG layer had good adherence with substrate and thick YSZ top layer, which presented the structure of micro-sized YAG particles embedded in nano-sized α-Al2O3 film. Cyclic oxidation tests at 1000 °C indicated that they possessed superior properties to resist oxidation of alloy and improve the spallation resistance. The thermal insulation capability tests at 1000 °C and 1100 °C indicate that the 250 μm coating had better thermal barrier effect than that of the 150 μm coating at different cooling gas rates. These beneficial effects should be mainly attributed to that, the oxidation rate of thermal grown oxides (TGO) scale is decreased by the “sealing effect” of α-Al2O3, the “reactive element effect”, and the reduced thermal stresses by means of nano/micro composite structure. This double-layer coating can be considered as a promising TBC.  相似文献   

17.
WC-(W,Cr)2C-Ni coating was prepared by high velocity oxy-fuel spraying (HVOF). The microstructure and phase composition of the as-sprayed coating and that after oxidation at high temperature were analyzed by means of scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The oxidation behavior of as-sprayed coating and starting powders was evaluated by thermogravimetry. Dry sliding friction and wear behavior of the WC-(W,Cr)2C-Ni coating sliding against Si3N4 ball at different temperatures (room temperature 20 °C and elevated temperature of 700 °C and 800 °C) was evaluated using an oscillating friction and wear tester. Besides, the microhardness and fracture toughness of the coating was also measured. Results show that sintering agglomerated WC-20 wt.%Cr-7 wt.%Ni powder is an effective method to prepare agglomerated and sintered WC-(W,Cr)2C-Ni composite powder. The excellent oxidation resistance of WC-(W,Cr)2C-Ni coating is mainly resulted from a double-decker shell-core microstructure formed in the coating. The composition of the outer shell is (W,Cr)2C phase and that of the inner shell is Cr3C2. During high-temperature friction and wear test, well remained hard WC phase in the WC-(W,Cr)2C-Ni coating can guarantee its good mechanical properties and wear resistance, and newly generated nano NiWO4, CrWO4 and Cr2WO6 particles can further improve these properties significantly.  相似文献   

18.
X.H Wang 《Corrosion Science》2003,45(5):891-907
The isothermal oxidation behavior of bulk Ti3AlC2 has been investigated at 1000-1400 °C in air for exposure times up to 20 h by means of TGA, XRD, SEM and EDS. It has been demonstrated that Ti3AlC2 has excellent oxidation resistance. The oxidation of Ti3AlC2 generally followed a parabolic rate law with parabolic rate constants, kp that increased from 4.1×10−11 to 1.7×10−8 kg2 m−4 s−1 as the temperature increased from 1000 to 1400 °C. The scales formed at temperatures below 1300 °C were dense, adherent, resistant to cyclic oxidation and layered. The inner layer of these scales formed at temperatures below 1300 °C was continuous α-Al2O3. The outer layer changed from rutile TiO2 at temperatures below 1200 °C to a mixture of Al2TiO5 and TiO2 at 1300 °C. In the samples oxidized at 1400 °C, the scale consisted of a mixture of Al2TiO5 and, predominantly, α-Al2O3, while the adhesion of the scales to the substrates was less than that at the lower temperatures. Effect of carbon monoxide at scale/substrate was involved in the formation of the continuous Al2O3 layers.  相似文献   

19.
An  T. F.  Guan  H. R.  Sun  X. F.  Hu  Z. Q. 《Oxidation of Metals》2000,54(3-4):301-316
The high-temperature oxidation behavior of a nickel-base superalloy andaluminide-diffusion coating has been investigated over the temperaturerange from 800–1100°C and analyzed by TGA, XRD, EDAX, andSEM. The -NiAl coating was formed by low-pressure gas-phasecementation at 950°C for 3 hr. It was found that the formation of-Al2O3 from -Al2O3 on the -NiAl coating resulted in asharp decrease in the parabolic rate constant kp by one order ofmagnitude at 1050°C during transient oxidation. The transformationcaused the anomalous behavior of the oxidation kinetics curves of thisdiffusion coating in the temperature range 800–1100°C withinthe first 100 hr. A change in the morphology of scales also occurredwith the transformation. A growth stress was characterized by theformation of convoluted scales, which were observed on the surfaceafter oxidation. The oxidation mechanism of this -NiAl diffusioncoating is described.  相似文献   

20.
Nickel spinel, Ni1–xAl2(1+x/3)O4, is the only intermediate compound in the quasibinary NiO--Al2O3 system at temperatures between 1000 and 1920°C. The spinel equilibrated with NiO occurs at its stoichiometric composition, NiAl2O4, independent of temperature. An alumina rich spinel, 0.17 x 0.62, equilibrated with -Al2O3 increases in alumina content with increasing temperature. Aluminum oxide solubility in NiO increases from 1 mole % at 1000°Cto 3 mol % at 1800°C. Nickel oxide solubility in -Al2O3 was found to increase from 2 mole % at 1000°C to 3 mole % at 1920°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号