首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid laser-waterjet micromachining technology has recently been developed for near damage-free micro-ablation. It uses a laser to heat and soften the target material and a waterjet to expel the laser-softened elemental material to decrease thermal damages and increase the material removal. A computational model for the hybrid laser-waterjet micro-grooving process for single crystalline silicon is presented in this paper using an enthalpy-based finite difference method. Laser heating and waterjet cooling and expelling with the temperature-dependent silicon properties are considered in the model to predict the temperature profiles of silicon and groove characteristics under different machining conditions. The simulation results show that the introduction of a high pressure waterjet enables to remove material at its soft-solid status much below its melting temperature, while the waterjet cooling effect can reduce the workpiece temperature during the laser non-pulse period and eliminate the effect of heat accumulation, so that the thermal damage induced by laser heating is minimized. The temperature field model is also used to predict the groove depth and profile, and it is found that the model can reasonably represent the machined groove characteristics when comparing to the experimental data.  相似文献   

2.
Ophthalmic intraocular lenses are conventionally machined by diamond tools. A promising alternative approach is contour cutting by ultrashort pulsed laser micromachining. To improve process knowledge, a parametric study of picosecond and femtosecond laser machining of medical grade hydrophilic copolymers and PMMA is carried out. Material removal rates and machining quality with respect to main process parameters are determined. Reasons for chipping and formation of heat affected zones are identified and an optimized process strategy is derived. By choosing a defined pulse overlap, heat accumulation is kept minimal while increasing absorptivity through incubation avoids chipping.  相似文献   

3.
Laser micromachining can replace mechanical removal methods in many industrial applications, particularly in the processing of difficult-to-machine materials such as hardened metals, ceramics, and composites. It is being applied across many industries like semiconductor, electronics, medical, automotive, aerospace, instrumentation and communications. Laser machining is a thermal process. The effectiveness of this process depends on thermal and optical properties of the material. Therefore, laser machining is suitable for materials that exhibit a high degree of brittleness, or hardness, and have favourable thermal properties, such as low thermal diffusivity and conductivity. Ceramics which have the mentioned properties are used extensively in the microelectronics industry for scribing and hole drilling.Rapid improvement of laser technology in recent years gave us facility to control laser parameters such as wavelength, pulse duration, energy and frequency of laser. In this study, Nd:YAG pulsed laser (with minimum pulse duration of 0.5 ms) is used in order to determine the effects of the peak power and the pulse duration on the holes of the alumina ceramic plates. The thicknesses of the alumina ceramic plates drilled by laser are 10 mm. Average hole diameters are measured between 500 μm and 1000 μm at different drilling parameters. The morphologies of the drilled materials are analyzed using optical microscope. Effects of the laser pulse duration and the peak power on the average taper angles of the holes are investigated.  相似文献   

4.
针对某型航空发动机燃油喷嘴结构尺寸微小、材料硬度较高、切削加工困难等问题,介绍了微细电解加工的原理和实验装置,制备了微细棒状工具电极和三角形钩状成形电极,利用分层电解铣削进行粗加工快速去除工件多余材料,再利用环形扫描电解铣削进行旋流室全锥面的精加工,实现了发动机喷嘴微小尺寸旋流室的微细电解加工成形,达到加工精度和表面质量要求。研究表明,微细电解铣削加工是加工金属材料微小结构的有效可行的方法。  相似文献   

5.
Designing, fabricating, and evaluating stretchable electronics is a growing area of materials research. Electronic devices have traditionally been fabricated using rigid, inorganic substrates (e.g., silicon) with metallic components and interconnections. Conventional electronic devices may face limitations when placed in environments that are dominated by stretchable or three-dimensional structures, including those within the human body. This paper describes the use of pulsed laser deposition to create diamond-like carbon microstructures on polydimethylsiloxane. The viability of human epidermal keratinocyte cells on polydimethylsiloxane surfaces coated with arrays of diamond-like carbon islands was similar to that on unmodified polydimethylsiloxane surfaces, which are commonly used in medical devices. It is anticipated that stretchable electronic devices may be incorporated within novel medical devices and prostheses that interface with stretchable or three-dimensional structures in the human body.  相似文献   

6.
The drilling of glass through holes with a high aspect ratio is crucial for microsystems application, especially in the inlet/outlet connection of microfluidic devices for biological analysis or for the anodic bonded silicon-glass ones. Traditional glass drilling using mechanical processing and laser processing in air would produce many kinds of defects such as bulges, debris, cracks and scorch. In this paper, we have applied the method of liquid-assisted laser processing (LALP) to reduce the temperature gradient, bulges and heat affected zone (HAZ) region for achieving crack-free glass machined holes. The nominal diameters of circles from 100 to 200 μm were drawn for through glass machining test. Through-hole glass etching can be obtained by LALP for 10 passes of circular scanning in several seconds on conditions of a 6 W laser power, 76 μm spot size and 11.4 mm/s scanning speed. The ANSYS software was also used to analyze the temperature distribution and thermal stress field in air and water ambient during glass hole machining. The higher temperature gradient in air induced higher stress for crack formation while the smaller temperature gradient in water had less HAZ and eliminated the crack during processing. CO2 laser micromachining under water has merits of high etching rate, easy fabrication and low cost together with much improved surface quality compared to that in air.  相似文献   

7.
飞秒激光在材料微加工中的应用   总被引:1,自引:0,他引:1  
飞秒激光脉冲以超高速和超高峰值特性将其能量全部、准确地集中在限定的作用区域,可对所有材料实现“冷”加工。由于在加工的过程中不产生冲击波,汽化物质也不把热量传给相邻的物质,因此避免了加工过程中热损伤的产生,得到了较高加工质量。和传统长脉冲激光加工相比,它有着加工材料广港性、精确性高、能耗低等无法比拟的独特优势,在材料的微细加工等高技术领域有着广泛的应用前景。  相似文献   

8.
微细电解加工脉冲电源的研制   总被引:3,自引:2,他引:3  
基于微细电解加工的特点,研制了一套高频、窄脉宽脉冲电源。该脉冲电源能大幅度减小加工间隙,从而使工件获得较好的形状精度和尺寸精度,并提高了加工更小尺寸工件的能力。详细介绍了脉冲电源的硬件结构和工作原理。通过该电源进行的加工实验,取得了很好的工艺效果。  相似文献   

9.
为了进一步降低传统耦合装置的加工成本和制作时间,提升水导激光耦合装置的加工质量和效率性能,根据水导激光微细加工的工作原理,设计出了环形凹槽和等距柱型流道结构的新型耦合装置。通过SolidWorks软件构建轴对称射流水腔的三维数值模型,并用ANSYS Fluent软件对其进行数值模拟流场仿真,分析了水腔内部速度矢量图、流线图和射流出口处气液两相流仿真图。结果表明:在进水口径8 mm、入口速度1 m/s、喷口口径0. 25 mm的设置条件下,水导激光耦合装置各个剖面的速度矢量平稳、紧密,喷口处水流均衡稳定、无波动。该耦合装置结构设计合理可靠,完全能够满足水导激光微细加工设计和使用要求。  相似文献   

10.
This paper presents an electrochemical micromachining (ECμM) system developed with a machining gap control system. As a preliminary, electrochemical machining (ECM) experiments are carried out. The optimum machining condition of ECM is determined in terms of machining voltage, machining pulse length, amplitude of the electrode for flushing out contamination, and electrolyte concentration. After the preliminary ECM experiments, three-dimensional shape micromachining is carried out under the optimum condition. First, a prismatic electrode with a 200-μm square as the base shape is machined by ECM. Next, three-dimensional shape micromachining is carried out by scanning the prismatic electrode. A three-dimensional shape with sub-millimeter range is successfully machined.  相似文献   

11.
Non-conventional machining is increasing in importance due to some of the specific advantages which can be exploited during micromachining operation. Electrochemical micromachining (EMM) appears to be a promising technique, since in many areas of application, it offers several special advantages that include higher machining rate, better precision and control, and a wider range of materials that can be machined. A better understanding of high rate anodic dissolution is urgently required for EMM to become a widely employed manufacturing process in the micro-manufacturing domain. An attempt has been made to develop an EMM experimental set-up for carrying out in depth research for achieving a satisfactory control of the EMM process parameters to meet the micromachining requirements. Keeping in view these requirements, sets of experiments have been carried out to investigate the influence of some of the predominant electrochemical process parameters such as machining voltage, electrolyte concentration, pulse on time and frequency of pulsed power supply on the material removal rate (MRR) and accuracy to fulfil the effective utilization of electrochemical machining system for micromachining. A machining voltage range of 6 to 10 V gives an appreciable amount of MRR at moderate accuracy. According to the present investigation, the most effective zone of pulse on time and electrolyte concentration can be considered as 10–15 ms and 15–20 g/l, respectively, which gives an appreciable amount of MRR as well as lesser overcut. From the SEM micrographs of the machined jobs, it may be observed that a lower value of electrolyte concentration with higher machining voltage and moderate value of pulse on time will produce a more accurate shape with less overcut at moderate MRR. Micro-sparks occurring during micromachining operation causes uncontrolled material removal which results in improper shape and low accuracy. The present experimental investigation and analysis fulfils various requirements of micromachining and the effective utilization of ECM in the micromachining domain will be further strengthened.  相似文献   

12.
Compound micromachining is the most promising technology for the production of miniaturized parts and this technology is becoming increasingly more important and popular because of a growing demand for industrial products, with an increased number not only of functions but also of reduced dimensions, higher dimensional accuracy and better surface finish. Compound micromachining processes that combine multiple conventional and non-conventional micromachining processes have the capability to fabricate high aspect ratio microstructures with paramount dimensional accuracy. Such machining should be carried out on the same machine with minimum change of setups. At the same time, on-machine tool fabrication along with on-machine tool and workpiece measurement facilities should also be available for further enhancement of the functionality of the machine and higher productivity. In order to achieve effective implementation of compound micromachining techniques, this research seeks to address four important areas, namely (a) development of a machine tool capable of both conventional micromachining including microturning, micromilling, etc., and non-conventional micromachining including microelectrical discharge machining (micro-EDM), wire-cut electrical discharge machining (WEDM), etc.; (b) process control; (c) process development to achieve the necessary accuracy and quality and (d) on-machine measurement and inspection. An integrated effort into these areas has resulted in successful fabrication of microstructures that are able to meet the miniaturization demands of the industry. This paper presents a few tool-based approaches that integrate micro-EDM, micro-EDG, microturning and microgrinding to produce miniature components on the same machine tool platform in order to demonstrate the capabilities of compound micromachining.  相似文献   

13.
Y. Takeuchi  T. Kawai 《CIRP Annals》2006,55(1):107-110
In recent years, ultra-precision micromachining technology has been used in a variety of fields such as optical instruments, electronic devices, medical equipments, etc. At present, it is essential to meet the requirement of producing various shapes, one of which is a structure with a high aspect ratio. Such structures are applied, for example, to a shaft of micro robot, a long part of microactuator and micromachine, a microneedle for syringe, etc. However, due to its fragile nature, it is extremely difficult to fabricate the structure with a high aspect ratio since it is easily damaged during cutting. It is intended to produce micro towers with high aspect ratios by applying the ultra-precision milling technology using a single crystal diamond cutting tool. The method enables accurate creation of a variety of microstructures with high aspect ratios. In addition, the study also proposes a new machining method to create microneedle arrays, avoiding the contact of cutting edge with already machined parts again. As a result, it is concluded that the proposed method has the potential of producing a variety of microstructures with high aspect ratios.  相似文献   

14.
Recent development in mechanical micromachining technology has increased the realization of micromachining as a feasible manufacturing process of micro-scale components including glass-based devices. It has been found that glass can be machined in a ductile regime under certain controlled cutting configurations. However, favorable ductile regime machining instead of brittle regime machining in micromilling of brittle glass is still not fully understood as a function of cutting configuration. In this study, the effect of tilt angle along the feed direction on cutting regime transition has been studied in micromilling crown glass with a micro-ball end mill. Straight glass grooves were machined in water bath by varying the tool tilt angle and the feed rate, and the resulting surface was characterized using the scanning electron microscope and the profilometer to investigate the glass cutting regime transition. In characterizing the cutting regimes in glass micromilling, rubbing, ductile machining, and brittle machining regimes are hypothesized according to the undeformed chip thickness. It is found that a crack-free glass surface can be better machined in the ductile mode using a 45° tilt angle and feed rates up to 0.32 mm/min. During each milling pass, surface roughness was found to decrease from the entry zone to the groove bottom and then increase to the exit zone regardless of the cutting regime.  相似文献   

15.
High performance aluminium based metal matrix composites possess low machinability characteristic. Electrochemical machining (ECM) is one of the advanced machining processes, used for machining of these newly developed exotic materials. This article critically reviews the research work on experimental investigations on ECM of aluminium matrix composites. Besides, recently developed techniques such as abrasive assisted electrochemical machining, electrochemical grinding, electrochemical micromachining, and electrochemical drilling are explored in the processing of aluminium metal matrix composites.  相似文献   

16.
An experimental study on a novel diamond whisker wheel   总被引:1,自引:0,他引:1  
G.F. Zhang  Z.H. Deng 《CIRP Annals》2010,59(1):355-965
This study proposes a novel diamond whisker wheel for grinding of advanced materials. The wheel is designed to have preferable spatial distributions and orientations of diamond whiskers which are prepared using a laser cutting technique. To obtain desirable cutting edge geometries, the whisker edges are formed on a lapping machine with diamond powders. The whisker wheel is used in a machining test on a silicon carbide particulate reinforced aluminum alloy and compared with a tungsten carbide milling cutter. The whisker wheel grinding provides better surface finish and significantly reduced machining force than for milling at the same material removal rate.  相似文献   

17.
Electrochemical micromachining can remove electrically conductive materials with the transferring of ions, so that high precision is achievable. A novel method for fabricating high-aspect-ratio microstructures by electrochemical micromachining using vibratile tungsten wire was proposed in this paper. The slight vibration of tungsten wire can improve the machining stability. The relations between the machining accuracy and machining parameters were experimentally studied. Micro groove with the width of 15 μm was machined, and micro sharp-angles structure with aspect ratio of 10 was obtained experimentally.  相似文献   

18.
NiTi shape memory alloys (SMA) are used for a variety of applications including medical implants and tools as well as actuators, making use of their unique properties. However, due to the hardness and strength, in combination with the high elasticity of the material, the machining of components can be challenging. The most common machining techniques used today are laser cutting and electrical discharge machining (EDM). In this study, we report on the machining of small structures into binary NiTi sheets, applying alternative processing methods being well-established for other metallic materials. Our results indicate that water jet machining and micro milling can be used to machine delicate structures, even in very thin NiTi sheets. Further work is required to optimize the cut quality and the machining speed in order to increase the cost-effectiveness and to make both methods more competitive.  相似文献   

19.
Due to several advantages and wider range of applications, electrochemical micromachining (EMM) is considered to be one of the most effective advanced future micromachining techniques. A suitable EMM setup mainly consists of various components and sub-systems, e.g. mechanical machining unit, micro-tooling system, electrical power and controlling system and controlled electrolyte flow system etc. have been developed successfully to control electrochemical machining (ECM) parameters to meet the micromachining requirements. Investigation indicates most effective zone of predominant process parameters such as machining voltage and electrolyte concentration, which give the appreciable amount of material removal rate (MRR) with less overcut. The experimental results and analysis on EMM will open up more application possibilities for EMM.  相似文献   

20.
Ceramics have attractive properties to metals and polymers, and they are consequently useful for specific applications. Silicon nitride has been studied extensively and has been found to possess promising thermal and mechanical properties at high temperatures. However, it has drawbacks such as brittleness and large scatter in its mechanical properties. As a result, it is difficult to fabricate complex shapes using traditional methods because of high cost and difficulties to machine the components. Today, ceramic parts have limited use for production of simple shaped parts and low quantities. This study explores the possibility of employing silicon nitride for more diverse applications using laser-assisted machining (LAM). Because the surface of the workpiece is locally heated by an intense laser source prior to material removal, softening and damage of the workpiece surface make machining of ceramics easy. Among the parameters of LAM, laser power is one of the decisive factors during the process. In this study, fractured cross sections were observed to examine how the microstructure of silicon nitride was changed by laser power. The deformation of microstructure near the surface of the workpiece increases when the laser power increases. It is found that increasing the laser power facilitates cutting of silicon nitride but results in detrimental heat effects on the surface of the workpiece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号