首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用数值仿真与实验相结合研究了流体冲刷下SRB的腐蚀行为。基于计算流体动力学(CFD)得到的管道腐蚀区域预测云图和粒子运动轨迹图结果,预判管道腐蚀部位,结果表明管道底部较顶部腐蚀、管道出口处腐蚀较入口处严重;在预判管道腐蚀部位布置研究电极,运用电化学方法以及表面分析方法探究了流体冲刷下SRB的腐蚀规律。结果表明,SRB在金属表面未形成生物膜时(未进行预膜处理),冲刷腐蚀占主导地位,金属表面有明显的冲刷腐蚀特点,腐蚀产物主要以Fe的氧化物为主。当SRB在金属表面预先形成致密生物膜时(进行预膜处理),SRB腐蚀占主导地位,生物膜会减缓冲刷腐蚀,但膜下SRB的生命活动会与金属基体发生电子交换,从而发生SRB腐蚀,腐蚀产物主要以硫铁化合物为主。  相似文献   

2.
碱性介质中铜镍合金及铜电极的光电化学研究   总被引:5,自引:0,他引:5  
用动电位伏安法和光电化学方法对铜镍合金(7%Ni 93%Cu)和铜电极在碱性介质中的电化学行为进行了研究。铜镍合金电极的阳极氧化膜呈p型光电响应,光电响应来自电极表面的Cu_2O膜,其厚度大于纯铜电极的Cu_2O膜。铜电极在碱性Na_2SO_4溶液中电位正向扫描时的光响应呈p型,点蚀电位以后光响应从p型转为n型。  相似文献   

3.
结合扫描电镜(SEM)及能谱(EDS)分析,采用电化学阻抗谱、极化曲线测试以及丝束电极(WBE)技术,对黄铜电极在含硫酸盐还原菌(SRB)的模拟冷却水中表面成膜及腐蚀状况进行了分析。结果表明,在含菌模拟冷却水溶液中,电极表面会形成一层生物膜,电极表面含有铜和硫等元素。电化学测试分析结果显示,随着浸泡时间延长,无菌溶液中铜电极的阻抗值不断增大,腐蚀电流密度下降;含菌溶液中铜电极的阻抗值则随时间减小,腐蚀电流密度显著增大;浸泡初期电极表面的极差较大,随时间延长极差不断减小,显示浸泡初期电极表面状态不一致性较大,可能是浸泡初期SRB在电极表面成膜不均匀,从而导致局部区域的腐蚀。  相似文献   

4.
用电化学方法研究了硫酸盐还原菌(SRB)生物膜对HSn70-lAB和BFe30-1-1铜合金腐蚀的电化学行为;用扫描电镜(SEM)和透射电镜(TEM)及X-射线能谱(EDS)分析了铜合金表面生物膜特征及其成分。结果表明,铜合金表面生物腐蚀与SRB的生长特性密切相关,SRB处于指数生长期时,Hsn70-lAB和BFe30-1-1铜合金的自腐蚀电位(Ecarr)和极化电阻(彤均迅速下降,腐蚀加剧,且后者腐蚀速度大于前者;而当SRB进人稳定生长阶段,两种合金的Ecarr和Rp均缓慢下降,腐蚀速度减缓,且二者腐蚀速度接近。表面生物膜的特征也有较大区别,HSn70-lAB铜合金表面的腐蚀产物膜比较平滑,BFe30-1-1铜合金表面的腐蚀产物膜较粗糙;且后者表面膜中S含量高于前者,腐蚀倾向明显增强。  相似文献   

5.
乌日根  董俊慧  朱霞 《铸造》2006,55(12):1235-1238
采用动态失重法测定铜镍合金铸铁在高温浓碱液中的腐蚀速度,借助光学显微镜和扫描电镜观察显微组织和表面腐蚀形貌,利用能谱仪分析表面微区成分。结果表明,微观基体上富集的铜和镍有利于提高铜镍合金铸铁的耐蚀性,在高温浓碱液中的动态腐蚀条件下,铜含量为4.5%的D3试样耐碱蚀性较好。当铜含量超过一定值时,铜镍合金铸铁中析出游离铜相,这些新相成为活性阴极相,降低铸铁的耐蚀性。  相似文献   

6.
采用微生物分析、电化学测试、扫描电镜观察及表面能谱分析等方法,研究了316L不锈钢在硫酸盐还原菌(Sulfate—Reducing Bacteria,SRB)与铁氧化菌(Iron—Oxidizing Bacteria,IOB)共同作用的溶液中的腐蚀电化学行为,分析了炼油厂冷却水系统中微生物腐蚀的特征及机制。结果表明,不锈钢电极在SRB与IOB相结合的溶液中的自腐蚀电位、点蚀电位和再钝化电位均随浸泡时间的增加而负移,其滞后环增大;在SRB与IOB共同作用的溶液中的腐蚀速率大于在无菌溶液中;显微观察表明生物膜疏松多孔,生物膜内细菌的生长代谢活动促使不锈钢表面的钝化膜层腐蚀破坏程度增加,在SRB与IOB共同作用下316L不锈钢电极发生了严重的点蚀。  相似文献   

7.
用动电位扫描极化曲线、原子力显微镜和电子探针等方法研究了SRB生物膜在培养基介质中对于含咪唑杂环的双季铵盐化合物MDOPD的敏感性.结果表明:含菌介质中,MDOPD吸附在电极表面,形成完整致密的有机保护膜,对电极的腐蚀反应具有良好的抑制作用,SRB的代谢及腐蚀产物也难以在电极表面直接吸附和沉积,从而降低了SRB生长代谢的次生过程(包括酸浸蚀等)对腐蚀的促进作用;同时也降低了介质中的SRB参与碳钢腐蚀的机会.  相似文献   

8.
对B30铜镍合金在海水中成膜的影响因素进行研究,确定最佳成膜条件,从而抑制B30铜镍合金在使用过程中发生点蚀等严重腐蚀损坏现象。采用电化学阻抗谱(EIS)、X射线光电子能谱(XPS)和激光共聚焦显微镜(CLSM)等方法研究了海水的p H、温度以及盐度对B30铜镍合金成膜的影响。在pH为6.6~9.8的海水中,随着pH值的增大,膜层致密性、完整性及保护性呈现先变好再变差的趋势;温度在2~36℃的范围内,随着海水中温度的提高,膜层呈现先变差再变好的趋势;盐度在20~36的范围内,随着盐度的提高,膜层呈现先变差再变好的趋势。pH以及盐度对B30铜镍合金的腐蚀影响较大。综合试样的腐蚀状况以及膜层测试,B30铜镍合金在盐度为20的海水中表面形成的膜层最为致密。  相似文献   

9.
使用腐蚀电位、线性极化电阻和电化学阻抗谱等电化学方法研究了海水环境中Cu~(2+)对Bl0铜合金腐蚀行为的影响。研究结果表明,海水中一定浓度的Cu~(2+)能够增大B10铜合金腐蚀速度。加入的Cu~(2+)能够在一定条件下还原沉积在基体金属、腐蚀产物膜表面。沉积的铜和基体金属形成电偶电池,铜膜为阴极,基体金属为阳极,增大基体金属腐蚀速度。所以当海洋结构中具有B10铜镍合金结构时,必须控制海水中电解铜离子浓度,在控制生物附着与污损的同时避免诱发铜合金电偶腐蚀破坏。  相似文献   

10.
硫酸盐还原菌(SRB)并非严格的厌氧菌,其可以耐受一定的溶解氧,但在有氧条件下SRB所引起的腐蚀研究较少。通过用电化学阻抗谱和动电位扫描极化曲线法研究了Q235钢电极在有氧的含SRB溶液中的腐蚀行为。结果表明:在SRB的生长初期和衰减期,Q235钢电极的腐蚀为微生物腐蚀和氧腐蚀协同作用,而在增殖期以微生物腐蚀为主;在SRB的整个生长过程中,Q235钢电极的腐蚀速度呈现先增大后减小然后趋于稳定的趋势。  相似文献   

11.
硫酸盐还原菌生物膜下铜镍锡合金的腐蚀行为   总被引:1,自引:0,他引:1  
用开路电位法、极化曲线法和电化学阻抗技术研究硫酸盐还原菌(SRB)对铜镍锡合金腐蚀行为的影响。用扫描电镜(SEM)和能谱分析(EDS)观察铜镍锡合金的腐蚀形貌。结果表明,SRB的存在使电极开路电位从-275 mV 负移至-750 mV,较无菌环境中开路电位(-100 mV)下降了650 mV,合金腐蚀加速。扫描电镜观察结果表明,合金表面生成不均匀的生物膜,主要发生点蚀和缝隙腐蚀。能谱分析显示腐蚀产物主要是铜和镍的硫化物,生物膜下铜镍锡合金发生脱镍和脱锡腐蚀。  相似文献   

12.
含硫酸盐还原菌土壤中阴极保护对Q235钢腐蚀的影响   总被引:2,自引:0,他引:2  
利用交流阻抗测试技术、扫描电镜及表面能谱、微生物分析等方法,研究了阴极保护对土壤中Q235钢硫酸盐还原菌腐蚀的影响.30天的实验结果表明,在相同的阴极极化电位下,有菌土壤中Q235钢所需要的阴极极化电流密度均大于灭菌土壤,有菌土壤中Q235钢的平均腐蚀速率均大于灭菌土壤.随着阴极极化电位负移的增大,有菌及灭菌土壤中Q235钢试件周围土壤逐渐呈碱性,有菌土壤中Q235钢试件周围土壤中硫酸盐还原菌数量逐渐减少,当阴极极化电位为-1050 mV时,Q235钢试件周围土壤中硫酸盐还原菌仍能够存活.  相似文献   

13.
硫酸盐还原菌生物膜下Cu—Zn合金的腐蚀研究   总被引:11,自引:7,他引:4  
从中原油田污水中分离提纯出硫酸还原菌(SRB)菌株,采用API RP-38推荐使用的培养基在铜材料上形成生物膜。结果表明,随着细菌的生长,细菌的代谢产物改变了黄铜的电极电位,用电子探针(EPMA)、X射线衍射(XRD)对生物膜形貌和成分进行了分析,生物膜中腐蚀产物成分主要有硫化亚铜(Cu2S)等硫化物,用交流阻抗(EIS)技术对生物膜结构进行了分析。  相似文献   

14.
不同湿度土壤中硫酸盐还原菌对碳钢腐蚀的影响   总被引:4,自引:3,他引:4  
利用微生物分析、失重法、交流阻抗测试技术、扫描电镜及表面能谱等方法,研究了在不同湿度的同一种土壤中,硫酸盐还原菌对碳钢腐蚀的影响规律。结果表明,土壤湿度对菌类生长的影响是显著的,硫酸盐还在菌随着湿度的提高呈递增趋势;在相同的湿度下,接菌土壤中A3钢腐蚀速率和点蚀深度都明显大于灭菌土壤,说明硫酸盐还原菌加速了A3钢在土壤的中的腐蚀;随着含水量的增大,A3钢腐蚀速率首先增大,当土壤含水量增大到15%-20%,腐蚀速率达到最大,然后腐蚀速率随着湿度增大而趋于减小;最大腐蚀深度出现在土壤含水量为15%左右时。  碳钢 土壤湿度 硫酸盐还原菌 微生物腐蚀  相似文献   

15.
海泥中硫酸盐还原菌对碳钢腐蚀行为的影响   总被引:6,自引:0,他引:6  
利用交流阻抗测试技术、扫描电镜及表面能谱、失重 法、微生物分析等方法,在室内模拟条件下研究了海泥中硫酸盐还原菌对碳钢腐蚀的影响,及在含和不含硫酸盐还原菌的海泥构成的宏电池腐蚀中碳钢的腐蚀行为.180天的试验结果表明,在有菌泥中碳钢的自然腐蚀速度均大于在灭菌泥中,两者相差35倍.说明海泥中硫酸盐还原菌增大了碳钢的腐蚀速率.在有菌和灭菌海泥构成宏电池时,有菌海泥中碳钢作为阳极,腐蚀速率比自然腐蚀状态下有所增大,加速率为119%.而在灭菌海泥中碳钢作为阴极,腐蚀速率比自然腐蚀状态下有所减小.  相似文献   

16.
土壤中SRB及Cl-对1Cr18Ni9Ti不锈钢腐蚀的相互影响   总被引:1,自引:2,他引:1  
利用交流阻抗测试技术、扫描电镜及表面能谱、失重法、微生物分析等方法 ,研究了在不同Cl-含量的土壤中 ,硫酸盐还原菌对 1Cr18Ni9Ti不锈钢腐蚀的影响规律 .13 6d的试验结果表明 ,不同Cl-含量土壤中SRB菌量在2 3 0 0 0~ 3 5 0 0 0 (个 /克土 )之间 ,Cl-的加入并没有显著影响SRB的生长 ,随着Cl-的加入土壤中SRB的菌量有增大的趋势 ;随着土壤中Cl-含量的增大 ,不锈钢腐蚀电位负偏移 ,而且在接菌土壤中的腐蚀电位比在灭菌土壤中负移幅度更大 ;不锈钢在灭菌土壤中没有发生点蚀现象 ,而在接菌土壤中发生了严重的点蚀 ,最大点蚀深度随着土壤中Cl-含量的增加而增大 ,这说明在土壤中SRB及Cl-的共同作用下 ,增大了不锈钢的点蚀敏感性 .不锈钢在灭菌土壤中的阻抗图谱表现为一个半径很大的容抗弧 ,而在接菌土壤中的阻抗图表现为两个时间常数的双容抗弧  相似文献   

17.
生物膜对碳钢腐蚀的影响   总被引:18,自引:7,他引:11  
由江汉油由田采油厂污水中分离,提纯出来的硫酸盐还原菌菌株,采用APIRP-38推荐使用的培养基生成生物膜,利用交流阻抗技术研究了生物膜与腐蚀之间的关系。细胞新陈代谢产物及腐蚀产生的分析借助于电子探针及气相色谱/质谱联用技术。  相似文献   

18.
硫酸盐还原菌对18-8不锈钢点蚀行为的影响   总被引:4,自引:0,他引:4  
利用原子力显微镜(AFM)和电化学方法研究了海水中硫酸盐还原菌(SRB)对18-8不锈钢(18-8SS)点蚀过程的影响. AFM探测显示,微观蚀孔的生长速率在含SRB介质中明显高于在灭菌介质中.阳极循环极化结果表明,SRB的代谢产物显著降低了18-8SS的点蚀电位和再钝化电位;而且在含SRB介质中,18-8SS在短时间内就能被活化,表明SRB的代谢活动极大地促进了钝化层的破坏过程.阴极极化曲线表明,含SRB介质中单质硫或多态硫的还原是促使点蚀生长的主要因素,其阴极还原电流密度可以达到很高的数值(>10 μA/cm2).  相似文献   

19.
SRB生物膜与碳钢腐蚀的关系   总被引:29,自引:11,他引:18  
利用间歇式方法培养硫酸盐还原菌(SRB)并制备SRB生物膜,研究表明,随着细菌的生长,细菌代产物改变了介质的PH,生物膜百度增加,膜中含菌量升高。在3%NaCl水溶液中,覆盖有不同生长期生物膜的碳钢试片的腐蚀速度有明显的差异;电子能谱对生物膜表面分析结果表明,不同生长期生物膜腐蚀产物的Fe/S比各不相同。为了验证生物膜中主要腐蚀因素,利用化学方法在试片表面沉积FeS膜,利用细菌滤膜隔离SRB,在度  相似文献   

20.
The effects of sulfate reducing bacteria (SRB) on cathodic protection (CP) of the Q235 steel in the soils have been studied by bacterial analyses, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and energy‐dispersive X‐ray analysis (EDX). The results showed that the pH value of the soil around the steel gradually increased, the number of SRB and the corrosion rate of the steel decreased, and the CP efficiency increased with the increasing of applied cathodic potential. At the cathodic polarization potential of ?1050 mV, SRB still survived in the soils. At the same potential, the CP efficiency in the soil without SRB was higher than that with SRB, and the corrosion rate of the steel in the soil with SRB was much higher than that without SRB. The cathodic current density applied for the steel in the soil with SRB was bigger than that without SRB at the same cathodic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号