首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以化学共沉淀法制备的球形Ni0.25Mn0.75CO3为前驱体合成高电压正极材料LiNi0.5Mn1.5O4,探讨用前驱体与Li2CO3直接反应和用前驱体分解后的氧化物与Li2CO3反应两种工艺路线对LiNi0.5Mn1.5O4形貌和电化学性能的影响。用扫描电镜(SEM)和X射线衍射(XRD)对Ni0.25Mn0.75CO3前驱体和LiNi0.5Mn1.5O4样品进行表征,用充放电测试和循环伏安法对LiNi0.5Mn1.5O4样品进行电化学性能研究。结果表明:两种方法合成的LiNi0.5Mn1.5O4均具有尖晶石型结构。但以前驱体Ni0.25Mn0.75CO3直接与Li2CO3反应合成的LiNi0.5Mn1.5O4的一次粒子颗粒较大,形貌较差,性能也较差;而以前驱体分解后的氧化物与Li2CO3反应合成的LiNi0.5Mn1.5O4的形貌及性能均较好。在3.0~4.9 V的电压范围内,1C倍率下电池的放电比容量达到136.3 mA.h/g,循环100次仍有126.5 mA.h/g,且材料具有较好的倍率性能;5C倍率下的首次放电比容量高达120.7 mA.h/g。  相似文献   

2.
通过草酸共沉淀法成功合成了5 V正极材料LiNi0.5Mn1.5O4,采用XRD、SEM、充放电试验和循环伏安法对合成产物进行表征。XRD和SEM分析结果表明,所合成的正极材料LiNi0.5Mn1.5O4具有立方尖晶石结构(空间群为Fdˉ3 m),结晶度高,粒度适中且比较均匀。电化学测试结果表明,合成产物具有优良的电化学性能,它仅在4.7 V附近有一个放电平台,0.1 C的放电容量高达133 mAh/g,50次循环后放电容量仍保持在128 mAh/g以上,1和3 C的放电容量在30次循环后也分别保持在122和101 mAh/g以上  相似文献   

3.
采用低温燃烧法合成了锂离子电池正极材料LiNi0.5Mn0.5-xCrxO2(x=0,0.01,0.02,0.05,0.1),研究了Cr取代部分Mn对其结构和电化学性能的影响。充放电测试结果表明:Cr取代部分Mn对正极材料LiNi0.5Mn0.5-xCrxO2的电化学性能有重要的影响,用适量的Cr取代Mn(x=0.02)能够提高正极材料的放电比容量和循环稳定性。X射线衍射(XRD)分析和循环伏安(CV)测试显示,Cr对Mn的适量取代能抑制正极材料中的阳离子混排,降低电极材料的极化,改善其可逆性能。LiNi0.5Mn0.48Cr0.02O2在2.5~4.6 V之间以0.1 C速率充放电,首次放电容量为179.9 mAh/g,第50次循环放电容量仍保有171.0 mAh/g,容量保持率达到95.1%  相似文献   

4.
采用溶胶-凝胶法并结合热处理工艺制备Li Co0.12Mn1.88O4粉体,考察了煅烧温度对Li Co0.12Mn1.88O4粉体形貌、结构及电化学性能的影响。结果表明:随煅烧温度的升高,粉体颗粒尺寸逐渐增大,晶型趋于完整。700℃煅烧10 h得到的Li Co0.12Mn1.88O4颗粒大小均匀,晶型完整。0.5C倍率下首次放电比容量达到117.9 m Ah/g,经100次循环后仍能达到108.8 m Ah/g,容量保持率高达92.3%,表现出良好的循环性能。  相似文献   

5.
为改善LiNi0.5Mn1.5O4的电化学性能,采用流变相法合成掺镁的锂离子电池正极材料LiMgxNi0.5-xMn1.5O4(x=0,0.05,0.1)。XRD测试结果表明所得材料仍为尖晶石结构。电化学性能测试结果显示:当x取值0.1,在3.5~4.9V电压范围内进行充放电循环时,材料LiMg0.1Ni0.4Mn1.5O4具有较好的循环性能,1C充放电时,初始放电比容量可达110.22mAh/g,30次循环后容量衰减率仅为7.7%。  相似文献   

6.
采用低温燃烧法合成了锂离子电池正极材料LiNi0.5Mn0.5-xCrxO2(x=0,0.01,0.02,0.05,0.1),研究了Cr取代部分Mn对其结构和电化学性能的影响。充放电测试结果表明:Cr取代部分Mn对正极材料LiNi0.5Mn0.5-xCrxO2的电化学性能有重要的影响,用适量的Cr取代Mn(x=0.02)能够提高正极材料的放电比容量和循环稳定性。X射线衍射(XRD)分析和循环伏安(CV)测试显示,Cr对Mn的适量取代能抑制正极材料中的阳离子混排,降低电极材料的极化,改善其可逆性能。LiNi0.5Mn0.48Cr0.02O2在2.5~4.6 V之间以0.1 C速率充放电,首次放电容量为179.9 mAh/g,第50次循环放电容量仍保有171.0 mAh/g,容量保持率达到95.1%  相似文献   

7.
采用原位包覆法制备表面包覆Li1.3Al0.3Ti1.7(PO4)3(LATP)的Li Ni0.5Mn1.5O4(LNMO),即LNMO@LATP正极材料。采用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学测试等手段对其物相结构、表面形貌及电化学性能进行研究。结果表明:LATP以无定型态紧密包覆于Li Ni0.5Mn1.5O4的表面,包覆层厚度约为5 nm。由于LATP包覆层具有保护电极材料表面和提高锂离子导电的双重作用,减少了电极过程的副反应,降低了电化学极化,提供了更多的锂离子扩散通道,导致LNMO@LATP具有比LNMO更稳定的循环性能和更好的倍率性能,特别是在高温的情况下。室温下在0.2C放电时,LNMO@LATP和LNMO的首次放电容量分别为141.5和142.6m A·h/g,经80次循环后,二者放电容量保持率分别达到99.2%和98.0%;而在10.0C放电时,LNMO@LATP和LNMO的首次放电容量分别为93.5和70.6 m A·h/g,经80次循环后,二者放电容量保持率分别达到66.1%和49.5%。当循环温度提高到55℃时,LNMO@LATP和LNMO在0.2C循环80次后的放电容量保持率分别为95.5%和79.2%;而在10.0C放电循环80次后,放电容量保持率分别为88.0%和51.0%。  相似文献   

8.
以碳酸盐为沉淀剂,采用共沉淀法合成晶型良好的亚微米级Li(Ni1/3Co1/3Mn1/3)O2粉末,并将其与AgNO3复合,采用无电流分解沉积法制备出了Ag表面修饰的Li(Ni1/3Co1/3Mn1/3)O2/Ag电极材料.利用X-射线衍射、扫描电镜及电化学测试等方法表征材料的结构、形貌和电化学性能.结果表明:Ag单质的存在可明显改善Li(Ni1/3Co1/3Mn1/3)O2的电化学性能,尤其是倍率特性,以0.2C、0.5C、1C倍率放电进行测试,经过40次循环后比容量分别为156.2、144.3、137.7mAh·g-1,其容量保持率分别为96.2%、95.3%、93.9%.Ag的表面修饰能使Li(Ni1/3Co1/3Mn1/3)O2电荷转移阻抗大幅度减小,阻抗从65Ω减小到50Ω.  相似文献   

9.
采用球磨和表面改性方法制备了复合储氢材料Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75-15wt%La1.5Mg0.5Ni6.7Al0.3。研究和分析表明,钒基Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.7铸态合金由bcc结构固溶体相和六方晶系C14型Laves相构成三维网状组织,球磨改性后钒基合金与La1.5Mg0.5Ni6.7Al0.3之间并未发生合金化反应。电化学性能研究表明,经球磨改性后复合材料Ti0.8Zr0.2V2.7Mn0.5Cr0.7Ni1.75-15wt%La1.5Mg0.5Ni6.7Al0.3能明显增加合金的电极放电容量。铸态钒基合金和球磨复合材料均具有良好的电化学循环稳定性,其中球磨1h后电极最大放电容量为300.1mA/g,经100次循环后的电化学容量保持率为97.2%,球磨5h后试样的循环稳定性高达99%。  相似文献   

10.
采用液相共沉淀法和固相烧结法分别制备镍钴锰复合氢氧化物(Ni0.5Co0.2Mn0.3(OH)2)和LiNi0.5Co0.2Mn0.3O2正极材料。通过X射线衍射和电化学性能测试对所得样品的结构及电化学性能进行了表征。结果表明:LiNi0.5Co0.2Mn0.3O2具有很好的α-NaFeO2层状结构,以20 mA/g的电流密度在2.5~4.3 V的电压区间充放电时,最高首次放电比容量达175 mA.h/g,首次库伦效率在89%~90%之间。当首次放电比容量为160~170 mA.h/g时,30循环未见容量衰减。锂含量对其电化学性能影响的结果表明:锂含量(n(Li)/n(Ni+Co+Mn))在1.03~1.09的范围内,随着锂含量的增加,放电比容量略有减小,但循环性能、中值电压以及平台性能都得到提高;当锂含量超过1.09时,循环性能、中值电压以及平台性能开始降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号