首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
轧后冷制度对低碳贝氏体钢组织及屈强比的影响   总被引:1,自引:0,他引:1  
在热模拟及轧制实验的基础上,利用扫描电镜和多功能材料试验机研究了轧后冷却制度对低碳贝氏体钢组织及屈强比的影响.结果表明,所研究钢种在1~25℃/s的冷却速度范围内均可得到贝氏体组织,其贝氏体开始转变温度为557~651℃.轧后以不同冷却制度冷却至室温的试样微观组织主要为板条贝氏体、粒状贝氏体、准多边形铁素体等的混合组织,冷却制度不同,各种组织所占的比例有很大不同.冷却制度对屈强比也有明显影响:轧后直接空冷至室温的试样的屈强比为0.68,但强度较低;油淬试样的屈强比约0.77,且强度较高;水冷至531℃而后空冷的试样的屈服强度较高,但抗拉强度相对较低,屈强比高达0.90.  相似文献   

2.
冷却制度对700MPa级低碳贝氏体钢组织与性能的影响   总被引:1,自引:0,他引:1  
在热轧试验的基础上,采用多功能材料试验机及光学显微镜,研究了不同冷却制度对700MPa级低碳贝氏体钢组织和性能的影响。结果表明,根据冷却制度的不同,所研究低碳贝氏体钢的微观组织表现为准多边形铁素体、粒状贝氏体和板条贝氏体等的比例、形态及尺寸的不同。轧后空冷时,试样的微观组织主要为准多边形铁素体和粒状贝氏体,其强度较低,但塑性较好;轧后水冷时,试样的微观组织主要为板条贝氏体,具有较高的强度和较低的伸长率;轧后油淬时,试样的微观组织主要为板条贝氏体、粒状贝氏体、准多边形铁素体及针状铁素体的复合组织,这种组织具有较好的强度和塑性配合;轧后水冷至531℃而后空冷至室温时,试样的微观组织主要为粒状贝氏体,具有高的屈服强度和屈强比。  相似文献   

3.
利用MMS-300型热力模拟实验机及φ450 mm热轧机,研究了控轧后冷却工艺制度对试验钢组织及性能的影响.结果表明:单一的板条组织具有较高的强度,但不利于屈强比的控制,屈强比高达0.94;而以贝氏体铁素体作为软相基体,其上弥散分布着细小的岛状M-A组元为硬质相的复相组织可以满足高强度及低屈强比.当终冷温度为550℃左右时,屈服强度为650MPa,抗拉强度达955 MPa,保证了较低的屈强比为0.68.  相似文献   

4.
屈强比是桥梁用钢的重要性能指标。研究了热轧后的冷却方式,包括普通的连续冷却、延迟冷却和分段冷却,对16 mm厚桥梁用Q500qE钢板屈强比的影响。结果表明:热轧后连续冷却的钢板组织为单一的贝氏体,强度较高,屈强比偏高;分段冷却,即热轧后水冷至670~740℃,以避免晶粒长大,再以1~3℃/s的冷速空冷至600~680℃,以获得部分铁素体,最后以大于15℃/s的冷速水冷至350℃以下,使剩余奥氏体完全转变为贝氏体,钢板的组织为铁素体+贝氏体双相,屈强比较低,符合要求。  相似文献   

5.
通过对比两种不同的轧后冷却工艺对汽车用含硼超高强度钢组织与性能的影响,得出此类钢轧制后喷水快速冷却到450℃,然后空冷至室温,可以获得贝氏体+铁素体组织,从而使实验钢获得较高的屈服强度和抗拉强度;而轧制后直接空冷至室温,获得的组织为铁素体+细珠光体+少量贝氏体,实验钢的抗拉强度较前者低260MPa.  相似文献   

6.
轧后冷却制度对X80级抗大变形管线钢组织和屈强比的影响   总被引:6,自引:0,他引:6  
利用SEM和TEM原位拉伸方法研究了轧后冷却制度对X80级抗大变形管线钢组织的影响及低屈强比的微观机理.结果表明:采用轧后弛豫+控制冷却的工艺可以获得铁素体+贝氏体双相组织,弛豫终止温度是影响铁索体体积含量和晶粒大小的决定因素.当弛豫终止温度区间为690—705℃时,试样的强度和塑性达到了较好的匹配,满足X80级抗大变形管线钢的性能要求.弛豫终止温度越低,铁索体体积含量越高,晶粒尺寸越大,屈强比越低.对拉伸过程进行动态原位观察的结果表明,铁素体(软相)和贝氏体(硬相)的协调变形机制是屈强比降低的原因.  相似文献   

7.
采用Gleeble-3500热模拟试验机、光学显微镜和扫描电镜等研究了低碳高强舰船用钢的连续冷却转变曲线(CCT曲线)及热轧后终冷温度对组织性能的影响。结果表明,试验钢连续冷却转变只发生了铁素体、贝氏体相变。试验钢轧后快速冷却至不同终冷温度立即空冷工艺下,室温组织主要为贝氏体和多边形铁素体,且随着终冷温度降低,贝氏体的含量增多。与直接空冷至室温相比,随着终冷温度提高,试样的强度呈先降低后增加趋势,然而,终冷温度提高到650 ℃时,试样强度却降低。终冷温度为600 ℃时,屈服强度和抗拉强度最高,分别为644.28 MPa和为679.71 MPa,-20 ℃的冲击吸收能量最优,为112 J。  相似文献   

8.
以高强度桥梁钢Q500qE为对象,研究不同冷却工艺对其组织和性能的影响规律。研究表明,低速冷却(5℃/s)工艺所得组织以粒状贝氏体为主,M/A岛尺寸粗大,虽然屈强比较低,但强度偏低,韧性较差;高速冷却(25℃/s)工艺所得组织以板条贝氏体为主,M/A岛呈球状或棒状,强度和韧性均得到较大提升,但屈强比偏高;分段冷却(20℃/s+空冷+20℃/s)工艺所得组织为多边形铁素体+板条贝氏体+粒状贝氏体的复合组织,M/A岛细小弥散,屈强比最低,韧性最高,综合性能最佳。  相似文献   

9.
利用热模拟方法测定低屈强比耐火耐候钢不同速率冷却后的组织。对比轧后弛豫工艺与未弛豫工艺以及终冷温度对试验钢性能的影响,利用光学显微镜、扫描电镜、透射电镜分析不同工艺对钢轧后显微组织的影响。结果表明,随冷却速度的增加,钢板组织由多边形铁素体变为针状铁素体+粒状贝氏体复相组织;由于弛豫处理过程中过冷奥氏体部分转变为多边形铁素体,钢板屈服强度和屈强比均下降;随着终冷温度的降低,钢板的屈服强度和屈强比上升,与钢中针状铁素体的细化与M/A组元的弥散强化有关;轧后直接水冷,并控制终冷温度至500~560 ℃,可获得高强度与低屈强比的良好匹配。  相似文献   

10.
以开发屈服强度大于1 300MPa低合金超高强结构钢为目的,采用不同的轧制及冷却工艺并进行再加热淬火和回火处理,研究了轧制冷却工艺对低合金超高强钢组织性能的影响规律。结果表明,试验钢经控制轧制后奥氏体晶粒被拉长成扁条状,水冷至600℃后再空冷至室温所得到的粒状贝氏体组织较直接空冷至室温的组织细小,高温连续轧制后空冷至室温得到的组织为粒状贝氏体+板条贝氏体;相比高温热轧工艺,采用控轧控冷工艺能增大轧态组织的原奥氏体晶界面积,能有效细化再加热原始奥氏体晶粒,晶粒尺寸可减小3.5μm;经控轧控冷及调质热处理后,钢板具有较好的强韧性,屈服强度为1 345MPa,抗拉强度为1 590MPa,-40℃冲击功为44J,各项性能指标均达到相关标准要求。  相似文献   

11.
冷却工艺对X80级抗大变形管线钢组织性能的影响   总被引:1,自引:0,他引:1  
采用两种冷却路径控制工艺试制了X80级抗大变形管线钢,并利用扫描电镜和透射电镜进行了显微组织观察,研究了轧后冷却工艺对X80级抗大变形管线钢组织性能的影响。结果表明,轧后采用前段空冷+后段快冷的"两段式冷却"工艺所得显微组织为先共析铁素体、针状铁素体、少量贝氏体和M/A岛,组织中软硬相匹配良好,屈强比为0.76;而超快冷+空冷+快冷的"三段式冷却"工艺获得针状铁素体、贝氏体和M/A岛混合组织,屈强比为0.8。两种冷却工艺均可获得抗大变形管线钢,差别在于应用三段式冷却工艺得到实验钢的强度较高,可用于开发更高级别抗大变形管线钢,并且空冷时间缩短。  相似文献   

12.
冷却速度对20Mn2Si1VB贝氏体钢显微组织和力学性能的影响   总被引:2,自引:0,他引:2  
研究了20Mn2Si1VB空冷贝氏体钢在高温奥氏体化后冷却速度对显微组织和力学性能的影响。结果表明,该钢在800℃~500℃获得贝氏体组织的平均冷却速度为0.5℃/s~10.0℃/s;随冷却速度不同,贝氏体组织中所含粒状贝氏体、无碳化物贝氏体和低碳下贝氏体的含量也不相同,但其对强度和塑性影响不大。  相似文献   

13.
针对当前开发高强韧性、低屈强比管线钢的需求,利用光学显微镜和透射电镜,研究了4种不同冷却方式下X80M管线钢的组织性能演变。结果表明:轧后空冷钢板的屈强比较高,金相组织主要为PF+P,没有明显的亚结构,位错密度低,强度低,均匀伸长率好,但落锤性能差;轧后钢板弛豫至Ar3温度以下,水冷前会先析出一部分PF,快速冷却过程中富碳奥氏体在更低温下会发生贝氏体转变,随着冷却速率的增大,组织形貌由块状演化为条片状贝氏体,由PF+B的双相组织构成,存在较高密度的位错,具有较好的均匀伸长率与硬化指数,该工艺适合抗大变形管线钢的生产;轧后钢板直接快速冷却至Ms温度以下,钢板强度高韧性好,但均匀伸长率与硬化指数下降,金相组织为典型AF+MA,该工艺适合常规高钢级管线钢的生产。  相似文献   

14.
利用Gleeble-2000D热模拟机、550 mm轧机、扫描电镜等研究了终轧温度和冷却工艺对铁素体贝氏体双相钢组织和性能的影响。首先,在水冷-空冷-水冷模式下研究终轧温度对显微组织和力学性能影响,结果表明:随终轧温度降低,基体组织带状加剧,且铁素体形态由多边形转变为沿轧制方向变形的椭圆形;当终轧温度低于800℃时,铁素体比例明显增加,贝氏体比例下降,抗拉强度下降。其次,在850℃的终轧温度下研究了冷却工艺对显微组织和力学性能的影响,结果表明:当终轧后冷却方式为水冷时,基体组织以准多边形铁素体和针状铁素体为主,伸长率较低;终轧后采用水冷-空冷-水冷方式冷却时,基体组织以块状铁素体和贝氏体为主,伸长率较高。  相似文献   

15.
模拟两阶段控轧控冷工艺,进行了低碳贝氏体钢轧制实验,分析了轧后快速水冷和空冷对低碳贝氏体钢组织及性能的影响。结果显示,钢轧后,在两种冷速下得到的组织形貌差别较大,快速水冷得到强度较高的板条贝氏体组织,缓冷得到强度较低的粒状贝氏体组织,粒状贝氏体的形成温度较高,没有明显板条特征;板条贝氏体屈服强度比粒状贝氏体高出278MPa,抗拉强度高出307MPa;而粒状贝氏体的塑性和韧性指标明显优于板条贝氏体,延伸率和-20℃低温冲击功指标是板条贝氏体的近3倍。  相似文献   

16.
凿岩机械用钢需具有高强度、高耐磨性及抗疲劳特性,通常通过热加工和热处理工艺改善其性能,但是工艺流程长、能耗较高。通过热轧试验研究了840~900℃之间不同终轧温度以及轧后空冷、空冷-炉冷两种冷却方式对22CrNi3Mo钢组织和性能的影响,探索了一种新型的直接热处理工艺。结果表明,轧后空冷至室温时,组织为板条贝氏体+马氏体,降低终轧温度可使组织细化,强度提高;轧后空冷-炉冷时,组织为板条贝氏体、粒状贝氏体及沿奥氏体晶界分布的残留奥氏体,且块状残留奥氏体体积分数随终轧温度的降低呈现先增加后减小的趋势,而尖角状M/A岛的出现使得应力集中,引起韧性的下降,降低空冷终止温度可显著减小块状残留奥氏体体积分数,使得材料强度、韧性明显提高,力学性能接近传统工艺。  相似文献   

17.
采用不同的开轧温度和终轧温度进行了SN490B-VSr新型微合金化建筑耐火钢试样的轧制,并进行了力学性能和高温耐火性能的测试分析。结果表明:随开轧温度、终轧温度的升高,试样的室温、高温强度和高温耐火性能先提升后下降。在1045℃开轧温度、820℃终轧温度轧制的试样,高温抗拉强度、高温屈服强度最大,高温屈强比与室温屈强比的比值最大,试样的耐火性能最好。SN490B-VSr微合金化建筑耐火钢试样的轧制工艺参数优选为:1045℃开轧温度、820℃终轧温度。  相似文献   

18.
对15 mm×100 mm的Q420qENH园林钢试样,在Gleeble-3800型热模拟试验机上进行控制轧制和控制冷却。采用金相显微镜、扫描电镜和透射电镜等设备研究了控轧后的冷却速度对Q420qENH钢显微组织和力学性能的影响。结果表明:控制轧制后以6~18℃/s速率冷却的钢的力学性能均达到了要求,以12和18℃/s速率冷却的钢的强度高于要求值49 MPa以上,屈强比小于0.85;随着冷却速度从2℃/s提高至18℃/s,钢的组织从铁素体+少量珠光体转变为以粒状贝氏体为主的组织,M/A岛面积分数和平均尺寸减小,不同取向晶粒的尺寸减小;随着控轧后冷速的增大,钢中小角度晶界的比例减小,大角度晶界的比例增大;控轧后以不同速度冷却的Q420qENH钢的晶粒尺寸与屈服强度之间存在线性关系,控轧控冷的园林钢的屈服强度可采用拟合的霍尔-佩奇公式预测。  相似文献   

19.
利用热模拟方法测定低屈强比复合析出强化钢不同速率冷却后的显微组织并绘制动态连续冷却转变曲线,然后对比了不同终冷温度下试验钢的力学性能,并利用光学显微镜、扫描电镜与透射电镜分析不同终冷温度对试验钢轧后显微组织的影响。结果表明,随冷却速度的增加,试验钢的组织由粒状贝氏体转变为板条贝氏体,未发现铁素体组织,具有高淬透性。随终冷温度由400 ℃升为450 ℃,钢中板条亚结构发生粗化,位错密度下降,但高温下合金元素快速扩散使富Cu相与Nb/Ti碳化物的数量提高,析出强化效果增强。经优化终冷温度为450 ℃,此时试验钢中粒状贝氏体比例较高,可获得高强度与低屈强比的良好匹配。  相似文献   

20.
采用Gleeble 1500热模拟试验机对成分为0. 12C-1. 46Mn-0. 83Si-0. 70Al-0. 34Mo-0. 01Nb的低碳钢进行多道次连续压缩后并空冷处理,得到了细晶铁素体+粒状贝氏体复相组织。采用扫描电镜和透射电镜研究了复相组织在600℃以下不同温度回火后的组织,并研究了实验钢回火后的室温拉伸性能。结果表明:该复相组织钢具有较好的强度及塑性,室温拉伸时屈服强度大于500 MPa,伸长率超过20%,屈强比为0. 65;同时该复相组织具有较好的回火稳定性,300~400℃较低温度回火3 h后不会引起马奥(M-A)岛的分解,500℃回火3 h后有少量马奥岛发生了分解,等轴铁素体内仍然存在高密度位错,600℃回火3 h后仍能保持一定量的马奥岛,贝氏体铁素体板条间及等轴铁素体晶界等处有碳化物粒子析出;随回火温度提高,实验钢的屈服强度和伸长率均呈现先增加后降低的趋势,400℃回火后屈服强度和伸长率达到峰值,600℃回火后的屈服强度仍高于未回火状态,伸长率与未回火态基本相当,但抗拉强度下降,屈强比增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号