首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探究海洋工程装备表面高效高质量强化及改性新技术,提高17-4PH不锈钢层制备效率及综合性能。方法 采用高速激光熔覆技术制备17-4PH丝材、17-4PH丝材协同B4C粉末及17-4PH丝材协同Cr3C2粉末3种熔覆层。通过X射线衍射仪、扫描电镜及能谱仪等仪器分析熔覆层的组织结构。利用显微硬度计及电化学工作站测试熔覆层的硬度及耐蚀性。结果 17-4PH丝材熔覆层主要为α相(马氏体),而2种丝粉协同熔覆层的相结构除α相(马氏体)外还出现γ相(奥氏体)。3种熔覆层组织及成分整体均匀,丝粉协同熔覆层晶界出现Cr、Nb等碳化物析出,表层分布碳化物颗粒。碳化物颗粒的添加提高了熔覆层硬度,尤其是B4C颗粒,其作为硬质相来增强熔覆层,在均匀细化晶粒的同时使得晶界和晶内析出大量第二相颗粒,硬度较未添加碳化物颗粒的17-4PH丝材熔覆层提升约35.53%。3种熔覆层在3.5%Na Cl溶液中的耐腐蚀性均较好,尤其是协同添加Cr3C2颗粒的熔覆层,相较于17-4PH丝材熔覆层,其腐蚀电流密度由...  相似文献   

2.
柱塞表面激光熔覆铁基涂层的强韧化机理   总被引:3,自引:3,他引:0       下载免费PDF全文
文中在柱塞表面激光熔覆制备高硬度铁基涂层,采用SEM,XRD,EPMA和TEM等手段研究熔覆层组织特征及耐磨性,阐述其强韧化机理.结果表明,激光熔覆铁基合金涂层成形良好,无裂纹及气孔等缺陷,熔覆层与基体呈冶金结合,组织由(Ni,Fe)固溶体、(Cr,Fe)23C6碳化物和少量孪晶马氏体组成.铁基熔覆层的强化机制主要有细晶强化、固溶强化、弥散强化以及马氏体强化;熔覆层内(Ni,Fe)固溶体及细晶强化的综合作用,保证了高硬度铁基涂层的韧性.铁基熔覆层显微硬度较45钢提高4倍,最大值HHV0.2=850 GPa;熔覆层耐磨性明显高于45钢,45钢表面出现大面积疲劳剥落,铁基熔覆层磨损面平整,磨痕很浅且少,磨损机制为轻微的磨粒磨损.  相似文献   

3.
史强  马欣  鲍思齐  高虹  黄勇 《焊接》2023,(11):39-45
采用高速激光熔覆系统在破碎机锤头中常用的材料高锰钢表面制备了Ni60耐磨熔覆层。通过正交试验极差分析优化得到最佳工艺参数,采用渗透探伤、显微硬度计、OM,XRD,BSE和摩擦磨损试验对熔覆层宏观形貌、硬度、微观形貌、物相、摩擦系数和磨损量进行观察与测试。结果表明,当激光功率为1 200 W、扫描速度为4 mm/s、送粉速度为7.5 g/min时,熔覆层表面成形质量良好,表面硬度可达811.41 HV,约为基材的2.8倍,摩擦系数较基材下降37.7%,耐磨性提高1.6倍。熔覆层主要由γ-Ni树枝晶组成,其中弥散分布的硬质相CrB,Cr7C3和Cr23C6可显著提高熔覆层的耐磨性。  相似文献   

4.
采用激光熔覆技术在Q235钢表面原位合成了VC-Cr7C3复合熔覆层,并研究激光扫描速度对熔覆层微观组织与力学性能的影响。利用扫描电镜、X射线能谱仪和X射线衍射仪等对熔覆层组织及性能进行分析。结果表明,激光熔覆技术可使V、Cr、C混合颗粒间发生原位反应形成VC-Cr7C3复合熔覆层,其主要由黑灰色VC相、灰色Cr7C3相及{FeM}粘结相组成,其中Fe与Cr可共同形成Cr7C3相(M7C3)。激光熔覆凝固形状控制因子K与C元素的分布状况使得熔覆层顶部出现大量碳化物等轴晶组织,中部碳化物等轴晶的含量有所减小,而底部由于C含量较低,其碳化物含量较少,且碳化物晶粒形貌受到激光扫描速度的影响,在1 mm/s时碳化物呈树枝晶组织,在1.5 mm/s时呈等轴晶组织。同时在1.5 mm/s时熔覆层晶粒尺寸明显小于1 mm/s时的。以上熔覆层组织结构与成分变化使其硬度随层深的增加而降低,同时随着扫描速度的增加,熔覆层的硬度也逐渐增加,熔覆层的硬度高于Q235钢3倍以上。在1.5 mm/s时熔覆层摩擦因数为0.4,低于Q235钢基材的0.6,且熔覆层磨损量显著低于Q235钢基材。由此可知,激光熔覆VC-Cr7C3复合熔覆层可用于碳钢的表面高硬、耐磨改性。  相似文献   

5.
目的 为了提高3Cr13马氏体不锈钢的硬度和耐磨性,在其表面制备TiC/Fe基熔覆层,分析熔覆层组织的均匀性及碳化物类型,探究碳化物演变机理和对熔覆层硬度的影响规律。方法 采用等离子同步送粉熔覆,在3Cr13不锈钢基材上熔覆球形TiC/Fe基熔覆层。利用扫描电子显微镜、X射线衍射、能谱仪分析熔覆层微观形貌特征、相组成以及析出相的元素分布规律,利用显微硬度计测量熔覆层的硬度。结果 随着TiC添加量的增加,熔覆层中的Ti和C元素含量也增加,说明有部分TiC熔解。未添加TiC的熔覆层组织主要是Fe-Cr固溶体和(Fe、Cr)7C3,TiC/Fe基熔覆层的为Fe-Cr固溶体和TiC、(Fe、Cr)3C2、(Fe、Cr)7C3。两种熔覆层中的析出相主要以(Fe、Cr)7C3为主,但在TiC/Fe基熔覆层中还存在其熔解后重新析出的TiC及过渡相(Fe、Cr)3C2。TiC添加量增加,熔覆层显微硬度也增加。结论 TiC/Fe基熔覆层中的第二相除(Fe、Cr)7C3,还有原始TiC、析出的TiC和(Fe、Cr)3C2。在研究范围内,随着TiC添加量增加,熔覆层中熔解的TiC量也增加。析出的TiC可以作为(Fe3Cr4)C3的有效形核质点,促进(Fe3Cr4)C3的形成,形成过程是(Fe、Cr)3C2以析出的TiC为形核核心形核长大,随后相变为更加稳定的(Fe、Cr)7C3,在快速冷却过程中有未转变完的(Fe、Cr)3C2保留下来。熔覆层中的原始TiC、析出的TiC、生成的(Fe、Cr)7C3和(Fe、Cr)3C2作为硬质相提高了熔覆层的硬度。  相似文献   

6.
目的 通过高速激光熔覆技术改善高压柱塞镍基合金涂层的组织,并提高涂层的耐磨性能。方法 分别采用常规激光熔覆(P=1.8 kW,vs=500 mm/min)和高速激光熔覆(P=1.8 kW,vs=7000 mm/min),在高压柱塞45#钢基材上制备了SD-Ni45耐磨涂层,分别测试了两种涂层的稀释率、微观结构、硬度,并通过可控气氛微型摩擦磨损试验仪和扫描电镜,对熔覆层的耐磨性进行了分析。结果 高速激光熔覆层的稀释率约为常规激光熔覆层的68%。高速激光熔覆层的物相与常规激光熔覆层的物相基本相同,并无新的物相析出,主要包括γ-(Ni,Fe)固溶体、Cr-Ni-Fe固溶体、Cr23C6以及少量的WC等强化相,但高速激光熔覆层的整体组织更加细小致密,硬质相颗粒分布更为均匀。高速激光熔覆层与常规激光熔覆层的平均显微硬度分别为600HV0.1、460HV0.1,高速激光熔覆层与常规激光熔覆层的磨痕宽度分别为210、315 μm,磨损量分别为(7.4±0.8)、(4.4±0.6) mg,高速激光熔覆层的耐磨性相对于常规激光熔覆层提高了约1.7倍。结论 高速激光熔覆技术可以有效地改善常规激光熔覆层裂纹敏感性大、稀释率较高、涂层较厚等缺陷,高速激光熔覆层的硬度和耐磨性较普通激光熔覆层有所提高。  相似文献   

7.
目的 确定含WC微粒镍基熔覆层中不同共晶相对熔覆层性能的影响规律。方法 通过等离子工艺制备含WC(质量分数10%)的Ni60熔覆层,并调整电流,以控制WC的熔解析出。通过维氏硬度计、剪切试验、磨粒磨损试验研究不同电流下熔覆层硬度、抗剪强度和耐磨性的变化情况,并通过扫描电镜和X射线衍射仪分析不同熔覆层的磨损形貌、组织和物相组成。结果 在不同电流下制备的熔覆层物相均主要为γ-(Fe,Ni)、M23C6、M7C3、WC、W2C、FeNi3、FeW2B2等。熔覆电流由110 A增至200 A时,熔覆层的硬度由846.7HV降至665.8HV,抗剪强度由174.9 MPa增至373.2 MPa。当电流低于140 A时,W、Cr、C等合金元素生成了块状先共晶相,可有效减轻磨粒磨损程度,提高耐磨性;当电流进一步增大时,W、Cr、C等合金元素以鱼骨状过共晶相析出,在磨粒磨损过程中易断裂、脱落,导致耐磨性下降。结论 熔覆电流的变化...  相似文献   

8.
为了研究熔覆电流的变化对Fe-Cr-B-C熔覆合金层组织及性能的影响,采用等离子熔覆技术在不同的熔覆电流下(75、85和95 A)在Q235钢板表面制备了Fe-Cr-B-C合金熔覆层,采用X射线衍射仪(XRD)、电子背散射衍射(EBSD)技术、维氏硬度计和扫描电镜(SEM)对熔覆层的物相、硬度和微观组织进行表征,并采用摩擦磨损试验机对熔覆层的摩擦磨损性能进行研究。结果表明:Fe-Cr-B-C熔覆层的物相主要为马氏体,同时有大量的Fe3C、Cr23C6、Fe2B、Cr2B、Fe2C、Fe7C3硬质相及少量的氧化物在基体内呈网状分布。随着熔覆电流的升高,熔覆层的稀释率增加,硬质相的含量逐渐降低。熔覆层硬度随着电流增大呈现先增大后减小的趋势,电流为85 A时熔覆层硬度最高。随着电流的升高,熔覆层的耐磨性先升高后下降,当熔覆电流为85 A时,熔覆层的磨损量仅为Q235基体的7%,表明Fe-Cr-B-C熔覆层能显著提高Q2...  相似文献   

9.
Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式   总被引:1,自引:1,他引:0       下载免费PDF全文
将Fe-Cr-Ti-C系耐磨药芯焊丝采用钨极氩弧焊堆焊到低碳钢表面,分析熔覆层中的物相组成,研究熔覆层中硬质相的形态分布和生长机理,探究熔覆层的耐磨性及表面硬度等力学性能变化的原因. 结果表明,药芯堆焊焊丝中的合金元素的过渡系数很高,可原位合成(Fe,Cr)7C3和TiC硬质相,TiC优先依附外来界面行核、长大,共晶(Fe,Cr)7C3硬质相则依附于初生马氏体相和TiC形核生长,点状TiC硬质相(少数为条状和十字状)弥散分布于马氏体、残余奥氏体的基体中,与网状的(Fe,Cr)7C3耐磨框架组成复合硬质相,提高熔覆层的耐磨性.  相似文献   

10.
采用激光熔覆技术在3种扫描速率下制备了NiCr/Cr3C2复合涂层,分别采用扫描电镜(SEM)、X射线衍射仪(XRD)、显微维氏硬度计、摩擦磨损试验机表征了熔覆层的组织形貌、硬度与摩擦磨损性能。结果表明,激光扫描速率从2 mm/s升至4 mm/s时,熔覆层组织从以树枝晶为主转变为以等轴晶为主,缺陷由气孔转变为大尺寸间隙与裂纹。扫描速率低于3 mm/s时,Cr3C2熔化分解导致熔覆层主要含有Cr7C3,随着激光扫描速率增加,Cr3C2熔化程度降低,熔覆层以Cr7C3与Cr3C2为主。因此,随着激光扫描速率从2 mm/s升高至4 mm/s,熔覆层硬度从400 HV0.3提升至780 HV0.3。不同激光扫描速率下熔覆层磨损均以磨粒磨损为主,但是由于结构致密和硬度较高,3 mm/s涂层磨损量最小,耐磨性最好。  相似文献   

11.
高硬度激光熔覆专用Fe基合金强韧化机理   总被引:4,自引:0,他引:4       下载免费PDF全文
李胜  曾晓雁  胡乾午 《焊接学报》2008,29(7):101-104
为解决高硬度激光熔覆层容易产生裂纹的问题,采用自制激光熔覆专用铁基合金粉末,在未采用预热和后热等措施的情况下,获得了高硬度且无裂纹的熔覆层.揭示了激光熔覆专用铁基合金强韧化机理,即晶内主要为中碳混合马氏体和晶间有相当数量残余奥氏体的复相组织强化.中碳混合马氏体作为基体,为熔覆层提供了高的硬度和强度以及一定的韧性.塑韧性极好的少量残余奥氏体则分布于晶界附近,在不明显降低熔覆层硬度和强度的同时吸收和减小熔覆层应力,降低开裂敏感性.  相似文献   

12.
采用等离子熔覆技术在718H模具钢表面熔覆铁基合金粉末,借助光学显微镜、X射线衍射仪、扫描电镜、能谱仪、显微硬度计和材料表面性能综合测试仪对熔覆层的显微组织、化学成分、物相组成、显微硬度和摩擦磨损性能进行了分析。结果表明:等离子熔覆铁基合金粉末的熔覆层的组织近表面为细晶区,中间为柱状晶,熔覆层与热影响区的交界处有一条平面晶组织,熔覆层与基体形成了冶金结合,热影响区组织为板条状马氏体;从基体到表面硬度大致呈梯度分布,熔覆层的硬度达到800 HV,大于基体材料的硬度;熔覆层中有较多M7C3碳化物和γ-(Cr-Ni-Fe-C)合金固溶体相,磨损量小于基体材料的,熔覆层的耐磨性明显好于基体材料。  相似文献   

13.
在楔横轧模具钢55Mn表面采用同轴送粉CO2激光熔覆WE—TiCp/镍基合金复合粉末,在增碳、锆条件下可获得成形好、无裂纹、与基体冶金结合的熔覆层。熔覆层微观组织特征为γ-(Fe,Ni)基体上均匀分布的大量从液态析出的富含Ti、W、Zr的复合碳化物颗粒相。熔覆层表层颗粒尺寸约为7~8μm,颗粒数量约为3500个/mm^2;熔覆层中部析出颗粒数目约为42100个/mm^2,尺寸约为1~3μm;熔覆层底部析出颗粒尺寸约为1~2μm,颗粒数量约为16800个/mm^2。中部区域个别析出颗粒相中间出现黑色圆点状组织。激光熔覆后模具钢表面形成3个不同的硬度分布区域,激光熔覆层硬度为427HV0.2,深度1020μm;热影响区硬度为740HV0.2,深度780μm;基体的硬度为250HV0.2。激光熔覆后的硬度分布兼顾了模具使用要求和后续加工。无润滑的环块磨损试验发现:激光熔覆处理后的试样摩擦系数降低30%,耐磨性提高一倍。  相似文献   

14.
在0Cr18Ni12Mo3Ti不锈钢核阀试样表面进行了FCo-5合金粉末的单道激光熔覆。研究了熔覆层的显微组织特征、相结构,并讨论了与显微硬度的对应关系。试验结果表明:具有无钨低碳中钴特点的FCo-5合金粉末激光熔覆层与基体达到了良好的冶金结合;熔覆层组织主要为g-Co奥氏体枝晶、枝晶间大量共晶组织及原位生成的Cr23C6颗粒相;熔覆层横截面显微硬度曲线呈“类M型”分布,最低硬度值较基体提高了192 HV0.2以上;弥散分布的Cr23C6颗粒对提高密封面的耐磨性非常有利。FCo-5合金粉末熔敷金属符合核阀密封面堆焊材料的技术要求,可以替代高钴含量的Stellite合金,并有益于减少二次污染、降低核阀成本。  相似文献   

15.
将纯Fe粉在Ti6Al4V合金表面进行激光熔覆。通过扫描电镜、X射线衍射、热力学计算和显微硬度测定,可以看出熔覆层中含有大量的树枝晶、块状组织和针状组织;TiO、Fe2C、V5Al3C0.6,LAVES等相弥散分布在激光熔覆层中,提高了熔覆层的硬度。粗大的树枝晶使熔覆层相应部位的硬度偏低。  相似文献   

16.
镁合金表面激光熔覆Al-Si合金涂层的组织和耐磨性   总被引:1,自引:0,他引:1  
以Al-Si共晶合金粉末为熔覆材料,在AZ91D镁合金表面进行了激光熔覆试验,利用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对激光熔覆层的组织、成分和相组成进行了分析,测试了激光熔覆层的显微硬度和磨损性能。结果表明,激光熔覆层由α-Mg过饱和固溶体和Mg17Al12、Mg2Si、Al3Mg2金属间化合物等相组成,且与基材之间形成了良好的冶金结合。由于激光熔覆层中存在金属间化合物析出相强化、细晶强化和固溶强化等多种强化作用,熔覆层的硬度比AZ91D合金提高了3#4倍,磨损量比AZ91D合金降低了72%。  相似文献   

17.
练国富  阙林志  曹强  曾嘉怡 《表面技术》2023,52(11):448-456
目的提高模切刀具刃口层硬度和耐磨性,使刃口层内部组织无缺陷。方法以Ni45A-Ti C-Ce O2为熔覆材料,采用激光熔覆技术在AISI 1045钢表面制备不同含量稀土氧化物复合涂层。通过测试,分别研究不同含量Ce O2(质量分数0%~5%)对熔覆层物相组成、显微组织、显微硬度和耐磨性能的影响规律。结果添加Ce O2后,熔覆层的物相主要包括Ti C、Ni3Fe、Cr7C3、Cr23C6等,少量Ce O2的加入未改变熔覆层内主要相的生成,在Ce O2的质量分数为5%的条件下,在熔覆层中观测到Ce2O3相。当Ce O2的质量分数为2%时,Ni45A-Ti C-Ce O2复合涂层表面无渣、无裂纹、润湿角较小、宏观形貌最好,从表面到与基体结合处涂层的显微组织无枝晶,组织得到明显细化,Ti C...  相似文献   

18.
Cr12MoV模具钢激光熔覆Ni基、Co基合金的组织与性能   总被引:11,自引:5,他引:11  
利用5kW的横流CO2激光器在Cr12MoV钢表面分别熔覆Stellie6和Ni60合金粉末,并利用X射线衍射、光学显微镜分析了合金熔覆层的金相组织和相组成;测量了合金熔覆层的显微硬度,并用M-200环-块磨损试验机研究了其磨损性能。结果表明,激光处理层存在熔覆区、结合区和基体热影响区三个区域。由于基材为淬火组织,故在热影响区中存在二次淬火区和回火区,最高硬度存在于二次淬火区。Stellie6合金熔覆层由枝晶Co基固溶体及Cr23C6、Cr7C3和CoCx碳化物、WC等相组成;Ni60合金熔覆层由Ni基固溶体及NiCrFe相、γ-Fe基固溶体、Cr23C6、Cr7C3型碳化物和Cr2B硼化物等相所组成。Ni60合金熔覆层比Stellie6合金熔覆层具有更高的硬度,Ni60熔覆层的耐磨性要比Stillite6熔覆层好。  相似文献   

19.
目的 提高钢表面熔覆层的硬度、耐磨性及其综合性能。方法 运用气体保护焊堆焊不同Nb含量的Fe-C-Cr-Nb系表面堆焊材料,采用JmatPro软件模拟计算不同铌含量的熔覆层CCT曲线和平衡冷区曲线,分析铌含量对熔覆组织转变和析出相的影响。运用光学显微镜、扫描电镜和X射线衍射仪观察晶粒尺寸和熔覆组织形貌,并对析出相进行分析。利用洛氏硬度计和滑动摩擦磨损试验机,分别对熔覆金属进行宏观硬度和耐磨性的测定。结果 不同铌含量熔覆组织均由马氏体和少量贝氏体组成,基体有大量的MC型碳化物析出。当Nb含量为1.5%时,碳化物弥散分布在熔覆组织中,强化效果最佳,此时硬度最高,为55.3HRC。此外,MC型碳化物有明显的细化晶粒作用,显著提高了熔覆组织的韧性。硬质相与韧性基体的配合,使熔覆组织的耐磨性在铌含量为1.5%时达到最佳。结论 通过调整Fe-C-Cr-Nb系表面堆焊材料中铌的含量,可以有效地控制熔覆金属组织类型及碳化物组成和分布,从而提高熔覆层的综合性能。  相似文献   

20.
采用激光技术在45钢表面熔覆Ni-WC/Cr3C2涂层,采用SEM,XRD等手段进行熔覆层的显微组织、相组成及成分分析,并测试熔覆层的耐蚀性和耐磨性能.结果表明,Ni-WC/Cr3C2熔覆层底部生成方向性较强的胞状树枝晶,中上部组织为细小的树枝晶.涂层主要是由γ-(Fe, Ni),M23C6型碳化物以及未熔的WC颗粒组成.细晶强化、合金元素固溶强化以及碳化物强化的共同作用,使熔覆层的显微硬度提高至711HV0.1.熔覆层耐蚀性明显改善,腐蚀电流密度约为45钢的1/4.随着摩擦速度的增大,激光熔覆Ni-WC/Cr3C2涂层和45钢磨损量增加,且熔覆层的磨损量低于45钢,表明其耐磨性能明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号