首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to their mechanical properties, WC-based cermet coatings are extensively used in wear-resistant applications. These coatings are usually produced using thermal spray processes. However, due to the nature and the environment of these spraying processes, the feedstock powder structure and properties suffer from decomposition, which subsequently degrade the performance of the coatings produced. The cold gas dynamic spraying process appears to be a promising alternative technique to preserve the properties of the feedstock powder during the coating preparation. Although the latter technique can minimize or eliminate the degradation of the sprayed material, the deposition of cermet using this technique is a difficult task. In this study, two types of cermet powders, the nanocrystalline (WC-15Co) and the conventional (WC-10Co4Cr) powders were deposited using the cold gas dynamic spraying and the pulsed gas dynamic spraying processes. The feedstock powders and coatings microstructures were investigated by OM, SEM and XRD, as well as their hardness. The results revealed the possibility of depositing cermet coatings onto aluminum substrates using both processes without any degradation of the carbide phase of the feedstock powder. The cold gas dynamic spraying process experienced difficulty in depositing and building up dense coatings without major defects. The pulsed gas dynamic process produced thick cermet (conventional and nanocrystalline) coatings with low porosity as long as the feedstock powder was preheated above 573 K.  相似文献   

2.
目的为解决超细/纳米WC-Co热喷涂时易于脱碳等瓶颈问题,制备具有高的硬度、断裂韧性、耐磨性和表面质量等优异综合性能的超细及纳米结构硬质合金涂层,并推广其在工业领域中的应用。方法以原位合成技术批量制备的超细/纳米WC-Co复合粉末为原料,利用团聚造粒技术制备得到具有高球形度和致密性,并保持原有超细/纳米结构的喷涂喂料粉末,利用超音速火焰喷涂工艺制备低脱碳、高致密的超细结构WC基涂层。结果降低喂料粉末孔隙度可有效减少涂层中W2C等脱碳相的含量,在优化工艺下制备的超细结构WC基涂层的硬度达到1450HV0.3以上,韧性相对于常规微米结构涂层提高40%以上,在两种载荷和磨料条件下均表现出更高的耐磨性。结论利用原位反应技术批量合成的超细/纳米WC-Co复合粉制备的硬质合金涂层具有优良的综合性能,可应用于对涂层的硬度、耐磨性、强韧性配合和表面质量有较高要求的工况。  相似文献   

3.
本文利用超音速火焰喷涂技术喷涂四种不同粒径的WC-17Co粉末,评价粉末粒径对涂层机械性能和抗磨粒磨损性能的影响。结果表明,粉末的粒径越小,在超音速焰流作用下获得的速度和温度越高,形成的涂层越致密,颗粒间的粘接强度越高,同时涂层的显微硬度也越高。WC-17Co粉末的粒径越小,获得涂层的孔隙直径越小,颗粒间的粘接缺陷越少,因此涂层的抗磨粒磨损性能越好。但是当WC-17Co粉末的粒径过于微小时,涂层的断裂韧性将受到影响。在本文研究的四种粒径分布的WC-17Co粉末中,中间粒径且分布范围集中的粉末制得的涂层兼具良好的机械性能和抗磨粒磨损性能。  相似文献   

4.
In this paper, preparation and characterization of porous anode layers with uniform phase distribution are discussed for solid oxide fuel cell (SOFC) application. The Ni/8YSZ cermet coatings were fabricated by atmospheric plasma spray (APS) process using oxidized nickel coated graphite (Ni-graphite) and 8 mol% yittria — stabilized zirconia (8YSZ) blend as feedstock. To control the microstructure of the coating, the nickel coated graphite with low density was used as a starting feedstock instead of conventional pure nickel (Ni) powder. To balance the conductivity, uniform porosity, and structural stability of the coatings, the effects of process parameters such as hydrogen gas flow rate, stand off distance and pore formation precursor (graphite) addition on the microstructures of the resulting coatings are investigated. The results show that the anode coatings with high conductivity, structural stability and porosity could be deposited with moderate hydrogen gas flow rate and short stand off distance.  相似文献   

5.
Thermally sprayed coatings based on tungsten carbide are widely used but not yet fully understood, particularly with regard to the chemical, microstructural, and phase changes that occur during spraying and their influence on properties such as wear resistance. The available literature on thermally sprayed WC-Co coatings is considerable, but it is generally difficult to synthesize all of the findings to obtain a comprehensive understanding of the subject. This is due to the many different starting powders, spray system types, spray parameters, and other variables that influence the coating structures and cause difficulties when comparing results from different workers. The purpose of this review is to identify broad trends in the powder/processing/structure relationships of WC-Co coatings, classified according to powder type and spray method. Detailed comparisons of coating microstructures, powder phase compositions and coating phase compositions as reported by different researchers are given in tabular form and discussed. The emphasis is on the phase changes that occur during spraying. This review concerns only WC-12% Co and WC-17% Co coatings, and contrasts the coatings obtained from the cast and crushed, sintered and crushed, and agglomerated and densified powder types. Properties such as hardness, wear, or corrosion resistance are not reviewed here.  相似文献   

6.
Cold gas dynamic spray is being explored as a repair technique for high-value metallic components, given its potential to produce pore and oxide-free deposits of between several micrometers and several millimeters thick with good levels of adhesion and mechanical strength. However, feedstock powders for cold spray experience rapid solidification if manufactured by gas atomization and hence can exhibit non-equilibrium microstructures and localized segregation of alloying elements. Here, we used sealed quartz tube solution heat treatment of a precipitation hardenable 7075 aluminum alloy feedstock to yield a consistent and homogeneous powder phase composition and microstructure prior to cold spraying, aiming for a more controllable heat treatment response of the cold spray deposits. It was shown that the dendritic microstructure and solute segregation in the gas-atomized powders were altered, such that the heat-treated powder exhibits a homogeneous distribution of solute atoms. Micro-indentation testing revealed that the heat-treated powder exhibited a mean hardness decrease of nearly 25% compared to the as-received powder. Deformation of the powder particles was enhanced by heat treatment, resulting in an improved coating with higher thickness (~ 300 μm compared to ~ 40 μm for untreated feedstock). Improved particle–substrate bonding was evidenced by formation of jets at the particle boundaries.  相似文献   

7.
The advantage of combining cryomilling and pulsed gas dynamic spraying (PGDS) processes in order to produce a nanostructured, dense and wear resistant coating was demonstrated. Cryomilling was successfully employed to synthesize particulate B4C reinforced Al matrix nanocomposite feedstock powders, while the PGDS process shows the ability of preserving the microstructure of the starting material. In this study, nanocrystalline and conventional Al5356?+?20%B4C composite as well as the unreinforced Al5356 alloy feedstock powders were used. The influence of the nature of the feedstock material on the microstructure and mechanical properties of the coatings was studied. The PGDS process provides an opportunity to preserve the phase of the starting material, to produce hard and dense coatings with good cohesion between deformed particles and good adhesion to the substrate. High dry sliding wear resistance was observed when cryomilled composite material was used.  相似文献   

8.
The effects of commercially pure titanium particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20-49 μm) on the cold spray process and resulting coating properties were investigated. Numerous powder and coating characterizations were performed including: powder oxygen and nitrogen contents, powder flowability, powder compressibility, coating microhardness, coating porosity, LOM/SEM analyses, and XRD. Compared to spherical powders, the sponge and irregular CP-Ti powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities. XRD results showed no new phases present when comparing the various feedstock powders to corresponding coatings. A higher particle temperature was also obtained with larger particle size for all feedstock powder morphologies processed with the same set of spray parameters. A spherical powder with 29 μm mean particle size was found to have the lowest porosity coating and best cold sprayability. The relationships of several as-cold sprayed coating characteristics to the ratio of particle impact and critical velocities were also discussed.  相似文献   

9.
Coatings of a composite material consisting of an Al-12Si matrix reinforced with 20 wt.% B4C particles were produced using Cold Gas Dynamic Spray (CGDS) and Pulsed Gas Dynamic Spray (PGDS) processes onto Al-6061 and SS-316L substrates. Two types of composite feedstock powders (mechanically mixed and cryomilled) were used. The influence of the coating process as well as the nature of the feedstock material on the coating microstructure and mechanical properties was studied. The combination of cryomilling to synthesize the feedstock powder and the spray processes provides a unique opportunity to produce hard and dense composite coatings with good cohesion between the deformed particles and good adhesion to the substrate, no phase degradation, very low compressive stresses and high dry sliding wear resistance. The two spray processes have shown almost similar results regarding microstructure and mechanical properties. No effect of the substrate material, Al-6061 and SS-316L, on the coating microstructure and properties was observed.  相似文献   

10.
Thermal spraying of fine feedstock powders allow the deposition of cermet coatings with significantly improved characteristics and is currently of great interest in science and industry. However, due to the high surface to volume ratio and the low specific weight, fine particles are not only difficult to spray but also show a poor flowability in the feeding process. In order to process fine powders reliably and to preserve the fine structure of the feedstock material in the final coating morphology, the use of novel thermal spray equipment as well as a thorough selection and optimization of the process parameters are fundamentally required. In this study, HVOF spray experiments have been conducted to manufacture fine structured, wear-resistant cermet coatings using fine 75Cr3C2-25(Ni20Cr) powders (?8 + 2 μm). Statistical design of experiments (DOE) has been utilized to identify the most relevant process parameters with their linear, quadratic and interaction effects using Plackett-Burman, Fractional-Factorial and Central Composite designs to model the deposition efficiency of the process and the majorly important coating properties: roughness, hardness and porosity. The concept of desirability functions and the desirability index have been applied to combine these response variables in order to find a process parameter combination that yields either optimum results for all responses, or at least the best possible compromise. Verification experiments in the so found optimum obtained very satisfying or even excellent results. The coatings featured an average microhardness of 1004 HV 0.1, a roughness Ra = 1.9 μm and a porosity of 1.7%. In addition, a high deposition efficiency of 71% could be obtained.  相似文献   

11.
The composition WC-(W,Cr)2C-Ni (commercial designations WC-‘CrC’-Ni, WC-Cr3C2-Ni and WC-NiCr) is unique among the WC-based materials used for the preparation of thermally sprayed hardmetal coatings. These coatings show a significantly higher oxidation resistance and high-temperature sliding wear resistance than WC-Co and WC-CoCr coatings do. Unlike WC-Co and Cr3C2-NiCr, WC-(W,Cr)2C-Ni is not a simple binary hard phase-binder metal composite as it is composed of two hard phases: WC and (W,Cr)2C. Surprisingly this composition has been poorly investigated in the past.In this paper coating microstructures and properties obtained from five commercial feedstock powders of different origins using two different liquid-fuelled high velocity oxy-fuel (HVOF) systems (K2 and JP-5000) were investigated. Additional experiments were performed with one powder using atmospheric and vacuum plasma spraying (APS and VPS, respectively). The microstructures and phase compositions of the powders and the coatings were studied. Focus was on the appearance, composition and distribution of the (W,Cr)2C phase which might form or might change its Cr/W ratio during the spray process. The composition of the (W,Cr)2C phase was estimated from the lattice parameters. Hardness HV0.3 was measured for all coatings. The density, Young's modulus and abrasion wear resistance of HVOF-sprayed coatings were studied.  相似文献   

12.
The detonation spraying is one of the most promising thermal spray variants for depositing wear and corrosion resistant coatings. The ceramic (Al2O3), metallic (Ni-20 wt%Cr) , and cermets (WC-12 wt%Co) powders that are commercially available were separated into coarser and finer size ranges with relatively narrow size distribution by employing centrifugal air classifier. The coatings were deposited using detonation spray technique. The effect of particle size and its distribution on the coating properties were examined. The surface roughness and porosity increased with increasing powder particle size for all the coatings consistently. The feedstock size was also found to influence the phase composition of Al2O3 and WC-Co coatings; however does not influence the phase composition of Ni-Cr coatings. The associated phase change and %porosity of the coatings imparted considerable variation in the coating hardness, fracture toughness, and wear properties. The fine and narrow size range WC-Co coating exhibited superior wear resistance. The coarse and narrow size distribution Al2O3 coating exhibited better performance under abrasion and sliding wear modes however under erosion wear mode the as-received Al2O3 coating exhibited better performance. In the case of metallic (Ni-Cr) coatings, the coatings deposited using coarser powder exhibited marginally lower-wear rate under abrasion and sliding wear modes. However, under erosion wear mode, the coating deposited using finer particle size exhibited considerably lower-wear rate.  相似文献   

13.
A novel approach of hybridizing the conventional atmospheric plasma spraying (APS) technique with the solution precursor plasma spray (SPPS) route to achieve thermal barrier coatings (TBCs) with tailored configurations is presented. Such a hybrid process can be conveniently adopted for forming composite, multi-layered and graded coatings employing simultaneous and/or sequential feeding of solution precursor as well as powder feedstock, yielding distinct TBC microstructures that bear promise to further extend coating durability. TBC specimens generated using conventional APS technique, the SPPS method and through APS-SPPS hybrid processing have been comprehensively characterized for microstructure, phase constitution, hardness and thermal cycling life, and the results were compared to demonstrate the advantages that can ensue from hybrid processing.  相似文献   

14.
Feedstock powder characteristics (size distribution, morphology, shape, specific mass, and injection rate) are considered to be one of the key factors in controlling plasma-sprayed coatings microstructure and properties. The influence of feedstock powder characteristics to control the reaction and coatings microstructure in reactive plasma spraying process (RPS) is still unclear. This study, investigated the influence of feedstock particle size in RPS of aluminum nitride (AlN) coatings, through plasma nitriding of aluminum (Al) feedstock powders. It was possible to fabricate AlN-based coatings through plasma nitriding of all kinds of Al powders in atmospheric plasma spray (APS) process. The nitriding ratio was improved with decreasing the particle size of feedstock powder, due to improving the nitriding reaction during flight. However, decreasing the particle size of feedstock powder suppressed the coatings thickness. Due to the loss of the powder during the injection, the excessive vaporization of fine Al particles and the completing nitriding reaction of some fine Al particles during flight. The feedstock particle size directly affects on the nitriding, melting, flowability, and the vaporization behaviors of Al powders during spraying. It concluded that using smaller particle size powders is useful for improving the nitriding ratio and not suitable for fabrication thick AlN coatings in reactive plasma spray process. To fabricate thick AlN coatings through RPS, enhancing the nitriding reaction of Al powders with large particle size during spraying is required.  相似文献   

15.
Calcium phosphate materials such as hydroxyapatite (HA) have biocompatible properties that can promote osteogenesis or new bone formation. Thermal spraying is an economical and effective process for coating the hydroxyapatite onto metal. It has been reported that plasma spraying changes the degree of crystallinity as well as the phase composition of the HA. This article reports the preparation and characterization of HA powders and coatings by two thermal spray processes (plasma and combustion flame) and suggests that the state of the starting powder adversely affects the coating characteristics. The raw HA powders are synthesized through a chemical reaction involving calcium hydroxide and orthophosphoric acid. Phase analysis using an X- ray diffractometer revealed that the synthesized powder consists of predominantly the HA phase. Calcined and crushed HA powders of various size ranges were fed into the plasma jet to produce HA coatings on metallic substrates. In addition, some HA powders were sprayed into distilled water by plasma spraying and combustion flame spraying to study powder melting characteristics. Other samples were plasma sprayed onto a solid rotating target to study atomization and impact behavior. The morphology of the rapidly solidified powders and thermal sprayed coatings were examined by scanning electron microscopy (SEM). An X- ray sedimentation particle size analyzer, laser diffraction particle size analyzer, and image analyzer performed the particle size analysis. Preliminary results indicate that particle cohesion, size range, and thermal treatment in the plasma affect the phase and structure of the as- sprayed coating, and some post- spray treatment may be necessary to produce a dense and adherent coating with the desired biocompatible properties.  相似文献   

16.
对两种(粉末A、粉末B)及其按一定比例混合(粉末C)的WC-10%Co4%Cr的粉末特性进行了表征,以这三种粉末为原料,利用空气助燃的超音速火焰喷涂(HVAF,High Velocity AirFuel)制备了WC-10%Co4%Cr涂层,着重研究喷涂粉末粒径、WC颗粒大小等对涂层的喷涂沉积率、硬度、韧性、结合强度和耐腐蚀等综合性能的影响。研究结果表明:A粉末喷涂沉积率高且价格较低;B粉末制备的涂层具有较高的硬度和韧性等,综合性能更优,但价格较高;混合粉末C喷涂沉积率较高,涂层的硬度、韧性和抗中性盐雾腐蚀等综合性能优良,具有较高的性价比。  相似文献   

17.
Thermal spraying of cermet coatings is widely used for protection of machining parts against wear and corrosion. These coatings consist of WC particles in metal binders such as Co, Cr and Ni. Three kinds of WC powders with different metal binders (Co, NiCr and CoCr) were sprayed by low power plasma spray system on Al-Si-Cu alloy substrate. Fundamental aspects of sprayed cermet coatings, including (i) the effects of binder type on the coating structure, (ii) the hardness and (iii) the microstructure, were investigated. All cermet coatings have the same phase structure such as WC and W2 C. However, the intensities of these phases are different in each coating, mainly due to the difference in solidification rate in each case. Moreover, the hardness measurements are found to be different in each coating. The results show that, binder type has a significant effect on the physical and mechanical properties of the sprayed coatings.  相似文献   

18.
The limited deformation of hard cermet particles and impacted coating makes it difficult for conventional thermal spray powders to continuously build up on impact in cold spraying. In this study, three nanostructured WC-12Co powders with different porous structure and apparent hardness were employed to deposit WC-Co coatings on stainless steel substrate by cold spraying. The deposition characteristics of three powders of porosity from 44 to 5% were investigated. It was found that WC-Co coating is easily built-up using porous powders with WC particles bonded loosely and a low hardness. The microhardness of WC-12Co coatings varied from 400 to 1790 Hv with powders and spray conditions, which depends on the densification effects by impacting particles. With porous WC-Co powders, the fracture of particles on impact may occur and low deposition efficiency during cold spraying. The successful building up of coating at high deposition efficiency depends on the design of powder porous structure.  相似文献   

19.
Plasma spraying of Al2O3/ZrSiO4 was performed using spray dried and plasma spheroidised powder feedstock. The mixtures were sprayed using different spray stand-off distances and plasma power levels. X-Ray diffraction (XRD) was used to characterise the phase composition and scanning electron microscopy (SEM) examined the morphology of the sprayed surface and polished cross-sections. The results showed that the plasma spray process parameters played an important role in the final outcome of microstructures of the coatings. The coatings produced with spheroidised powders displayed a much denser structure than those produced with the spray-dried powders. The phase composition analysis showed the presence of amorphous phases in addition to crystalline alumina, zircon and tetragonal (t) zirconia (ZrO2). Transmission electron microscopy (TEM) showed that amorphous phases and t-ZrO2 crystals with particle size 100–200 nm could coexist within a single splat due to the relatively low local cooling rate.  相似文献   

20.
The specific advantages of TiC as a hard material are its low density, high hardness, and its high alloyability in metal matrix composites. Agglomerated and sintered core-rim structured TiC-based powders were intensively studied in the last few years for thermal spray coating solutions. In the work described in this paper a powder with cubic (Ti,Mo)(C,N) hard phases and Co binder were used together with mechanically mixed NiBSi and CoCrMo powders to produce wear resistant coatings by laser cladding. Coatings with fine-grained hard particles were obtained. Basic process parameters and coating microstructures are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号