首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同Gd含量对变形Mg-Zn-Gd合金织构和室温成形性能的影响   总被引:1,自引:0,他引:1  
采用气氛保护加机械搅拌方法熔炼Mg-xZn-Ca-yHA (x=1,3,5;y=0,1,3,5)系列合金及其复合材料.通过金相显微镜(OM)和场发射扫描电子显微镜(FESEM)观察其铸态微观组织;X-射线衍射仪(XRD)分析物相组成;电化学和体外浸泡实验测试挤压态复合材料的耐腐蚀性能.结果表明,纳米羟基磷灰石(HA)颗粒可添加至Mg-Zn-Ca合金中,并在冶炼温度下脱水,转变成为了β-Ca3(PO4)2,同时显著细化基体合金的晶粒.其中,添加质量分数1%HA的复合材料具有最好的耐腐蚀性能.Mg-3Zn-Ca/1HA复合材料的腐蚀电位、腐蚀电流密度和腐蚀速率分别为-1.582 V,1.47μA/cm和14.19 mm/a,明显优于Mg-3Zn-Ca合金的-1.662 V,2.22μA/cm和21.28 mm/a.而添加3%HA的Mg-3Zn-Ca-3HA复合材料由于HA在基体中的部分团聚导致其耐腐蚀性能较Mg-3Zn-Ca合金有所下降.  相似文献   

2.
The AM50, AM50–0.1Ca, AM50–0.3Ca and AM50–0.5Ca (wt.%) alloys were hot-rolled and their mechanical properties were determined for the purpose of investigating the effect of trace Ca addition on the texture and stretch formability of AM50 alloy. The results show that the addition of trace Ca can effectively modify the basal texture, which is characterized by the split of basal poles deviated from the normal direction (ND) after the hot rolling, while a broad spread of the basal planes toward the transverse direction (TD) after the annealing. Such change of the basal texture is related to the prior formation of massive compression twins and the decrease of the c/a ratio. Erichsen value increases from 2.25 to 4.21 mm with the increase of Ca content. The enhancement of stretch formability is ascribed to the weakened basal texture, which results in the increase of n-value and the decrease of r-value.  相似文献   

3.
镁合金薄板因强基面织构制约,室温成形能力不足,工业应用受到极大限制。本文从镁合金板材织构弱化的机理出发,突出剪切诱导孪晶启动实现镁合金薄板织构弱化的可行性以及存在的机理不明问题。结合孪晶实现镁合金薄板材织构弱化的工艺发展,讨论目前剪切变形工艺在镁合金薄板材加工应用的优点和不足。针对复杂应力状态下滑移和孪晶启动的机理不明以及剪切变形诱导镁合金织构弱化的工艺不足,分别提出了等效Schmid因子和等通道弯曲技术,并说明了新计算理论和新剪切加工技术在镁合金薄板材方面的应用。  相似文献   

4.
In order to broaden the application of wrought Mg alloy sheets in the automotive industry, the influence of Ca and Sm alloying on the texture evolution, mechanical properties, and formability of a hot-rolled Mg–2Zn–0.2Mn alloy was investigated by OM, XRD, SEM, EBSD, tensile tests, and Erichsen test. The results showed that the average grain size and basal texture intensity of Mg–2Zn–0.2Mn alloys were remarkably decreased after Ca and Sm additions. 0.64 wt.% Ca or 0.48 wt.% Sm addition significantly increased the tensile strength, ductility and formability. Moreover, the synergetic addition of Sm and Ca improved the ductility and formability of Mg–2Zn–0.2Mn alloy, which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition. The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability.  相似文献   

5.
To develop a new magnesium alloy with excellent formability at room temperature, the effect of Y, Ce, and Gd addition on texture and stretch formability of Mg-1.5Zn alloys was carried out. The result shows that Y, Ce, and Gd addition in Mg-1.5Zn alloys can effectively weaken and modify the basal plane texture, characterized by TD-split texture in which the position of basal is titled from normal direction (ND) toward transverse direction (TD). When Mg-1.5Zn alloy with Gd addition appears low texture intensity and TD-split texture, where the position of basal poles is tilted by about 4-35° from ND toward to TD, the largest Erichsen value of 7.0 and the elongation rate reaches 29.1% in TD direction. However, Y and Ce addition in Mg-1.5Zn alloys promote a large number of second phase particles, which cancel the contribution of the unique basal texture to stretch formability and ductility.  相似文献   

6.
As lightweight requirements rise in transportation, aerospace, and other industries, magnesium alloys have a great application prospect. However, the low formability capabilities of magnesium alloys lead to a severe limit in applications. At present, there are many reports on the influences of texture and second phases on the formability of magnesium alloys at room temperature. Nevertheless, the dominant factors affecting the formability performance of magnesium alloys at room temperature are not clear. In this study, the development of the microstructures and texture of Mg-xZn-0.5Er (x = 0.5, 2.0, 3.0, 4.0, mass fraction, %) alloy sheets were studied, and the impact of the texture and second phases on the formability of these sheets were also investigated. The findings showed that the increase in Zn addition led to an early and complete dynamic recrystallization (DRX) in Mg-Zn-Er alloys sheets, and these recrystallized grains would expand significantly during subsequent hot rolling processes. These recrystallized grains with a large size were typically elongated and then helped to create a strong basal texture. Thus, it was discovered that the microstructures of these sheets were typically made up of equiaxed and elongated grains. The formability performance of these sheets was strongly related to the size of the second phases and the texture. The formability of the sheets containing microscopic second phases mainly depended on the basal texture, while the formability of the sheets which contained coarse second phases was mostly influenced by the second phases and basal texture. Particularly, when the component of the coarse second was larger, the formability would get more inferior due to the predominant role of the second phase at room temperature.  相似文献   

7.
针对AZ31镁合金板材室温冲压成形较差的特点,采用在不同轧制温度下获得的镁合金板材对其进行拉伸、埃里克森和锥杯试验,并通过光学电镜和X射线衍射仪对其显微组织、织构和成形性能等进行研究.结果表明,AZ31镁合金板材的综合力学性能不仅与晶粒尺寸有关,还与晶粒取向有关;基面织构的减弱可明显提高板材的胀形性能,在基面织构强度相似的强况下,晶粒大小对板材的成形性能起决定性影响.  相似文献   

8.
含Ca及Si镁合金的显微组织及力学性能   总被引:1,自引:2,他引:1  
采用光学显微镜、扫描和透射电子显微镜研究了含Ca、 Si镁合金的显微组织特征. 铸态下, 仅含Ca的镁合金主要由镁基体和晶界离异共晶组织(Mg Mg2Ca)组成; 加入约0.5%(质量分数)Si后, 晶界离异共晶组织消失, 在晶界附近及晶内形成弥散分布的细小点状(球状)、针状和粗块状CaMgSi相; 当含Si量较高(约1.0%)时, 出现中国字形(针状)的Mg2Si相. 固溶时效后, 只含Ca的镁合金中晶界处离异共晶组织消失, 代之以长大了的颗粒状Mg2Ca相; 而Mg-Ca-Si合金的固溶时效组织较铸态无明显变化. 对合金常温和高温短时拉伸性能也作了初步探讨.  相似文献   

9.
The production cost will be greatly reduced if nitrogen can be used instead of inert gas in the spray forming process of magnesium alloys,but the heat from the reaction between magnesium alloys and nitrogen makes magnesium alloy burn easily.To solve the problem above,the ignition point of Mg-Ca alloy under nitrogen atmosphere was studied using a home-made experimental device and DSC-DTA.Results show that under nitrogen atmosphere,Ca addition has a great effect on the ignition point of Mg alloy.The ignition point of the Mg-5Ca bulk even exceeds 1,030 ℃,and the alloy can be held for 30 min at 900℃ without burning; while the average ignition point of Mg-5Ca powders is lower than 700℃,and it increases with the increasing particle size.Moreover,the purity of nitrogen must be in a certain scope; Mg-Ca alloy shows a higher ignition point under nitrogen with a purity of 99.5%.Based on the experimental results,the best adding content of Ca and the purity of nitrogen were determined,and the security and economic performance of preparing magnesium alloys by spray deposition were improved with nitrogen as atomizing gas.  相似文献   

10.
The microstructure, texture, residual stress, and tensile properties of Mg–6 Zn–2 Y–1 La–0.5 Zr(wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refi nement due to dynamic recrystallization(DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a signifi cant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.  相似文献   

11.
In order to develop new magnesium alloy sheets with high formability at room temperature, the microstructure, texture, ductility, and stretch formability of rolled Mg-2%Gd-1%Zn and Mg-3%Gd-1%Zn sheets were investigated. The microstructures of these rolled sheets consist of fine recrystallized grains with a large amount of homogeneously distributed tiny particles in the matrix. The basal plane texture intensity is quite low and the basal pole is tilted by about 30° from the normal direction toward both the rolling direction and the transverse direction. The sheets exhibit an excellent ultimate elongation of ∼50% and a uniform elongation greater than 30%, and the Erichsen values reach ∼8 at room temperature. The flow curves of the two Mg-Gd-Zn alloys sheets display a remarkable linear hardening after an obvious yield point. The majority of the grains in the tilted texture have an orientation favorable for both basal slip and tensile twinning because of a high Schmid factor. The excellent stretch formability at room temperature can be attributed to the non-basal texture and low texture intensity, which led to the following characteristics: a lower 0.2% proof stress, a larger uniform elongation, a smaller Lankford value and a larger strain hardening exponent.  相似文献   

12.
Previous studies showed that signifi cant increases in elongation in Mg–Ce alloys due to the Ce addition and the solute drag eff ect by Ce addition were ascribed to the non-basal dislocation slip activating and the texture altering. The microstructure evolution and deformation models of extruded Mg-0.5 wt%Ce alloy rods under uniaxial tension have been studied using in situ electron backscatter diff raction. The basal and non-basal slips were characterized by using slip line trace analysis. The results provide evidence for that pyramidal slip activated during deformation, besides basal slip and extension twinning, which contributes to the texture weakening and ductility increasing in Mg-0.5 wt%Ce alloy.  相似文献   

13.
Cold stamping for AZ31B magnesium alloy sheet of cell phone house   总被引:1,自引:0,他引:1  
Electric product house of magnesium alloy sheet is usually obtained by warm stamping owing to its poor plasticity and formability at room temperature. The formability of AZ31B magnesium alloy sheet can be improved by repeated unidirectional bending (RUB) process through control of (0002) basal texture. Compared with as-received sheet, the Erichsen value (IE) of the sheet underwent RUB process increases to 5.90 from 3.53 at room temperature. It is also confirmed that cell phone houses could be stamped successfully in crank press with AZ31B magnesium alloy sheets underwent RUB process. It provides an alternative to the electronics industry in the application of magnesium alloys.  相似文献   

14.
A vacuum stir casting process is developed to produce SiCp reinforced cast magnesium matrix composites. This process can eliminate the entrapment of external gas onto melt and oxidation of magnesium during stirring synthesis. Two composites with Mg-Al9Zn and Mg-Zn5Zr alloys as matrices and 15 vol.% SiC particles as reinforcement are obtained. The microstructure and mechanical properties of the composites and the unreinforced alloys in as-cast and heat treatment conditions are analyzed and evaluated. In 15 vol.% SiCp reinforced Mg-Al9Zn alloy-based composite (Mg-Al9Zn/15SiCp), SiC particles distribute homogenously in the matrix and are well bonded with magnesium. In 15 vol.% SiCp reinforced Mg-Zn5Zr alloy-based composite (Mg-Zn5Zr/15SiCp), some agglomerations of SiC particles can be seen in the microstructure. In the same stirring process conditions, SiC reinforcement is more easily wetted by magnesium in the Mg-Al9Zn melt than in the Mg-Zn5Zr melt. The significant improvement in yield strength and elastic modulus for two composites has been achieved, especially for the Mg-Al9Zn/15SiCp composite in which yield strength and elastic modulus increase 112 and 33%, respectively, over the unreinforced alloy, and increase 24 and 21%, respectively, for the Mg-Zn5Zr/15SiCp composite. The strain-hardening behaviors of the two composites and their matrix alloys were analyzed based on the microstructure characteristics of the materials.  相似文献   

15.
Repeated unidirectional bending (RUB) process was carried out to improve the texture of AZ31B magnesium alloy sheets. Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures was investigated. Compared with the as-received sheets, the limiting drawing ratio of the RUB processed sheets increased to 1.3 at room temperature, 1.5 at 50 °C and 1.7 at 100 °C, respectively. The improvement of the press formability at lower temperatures can be attributed to the texture modification, which led to a smaller Lankford value and a larger strain hardening exponent. However, the press formability of the sheet with a weakened basal texture has no advantage at higher temperature. This is due to much smaller r-value that results in severe thinning in thickness direction during the stamping process which is unfavorable to forming. Anyhow it is likely that the texture control has more effect on the press formability at lower temperature.  相似文献   

16.
High-temperature pre-stretching experiments were carried out on the AZ31 Mg alloy at 723 K with strain levels of 2.54%, 6.48%, 10.92%, and 19.2% to alter the microstructure and texture for improving room-temperature formability. The results showed that the strain-hardening coefficient increased, while the Lankford value decreased. In addition, the Erichsen values of all pre-stretch sheets were enhanced compared with that of the as-received sheet. The maximum Erichsen value increased from 2.38 mm for the as-received sample to 4.03 mm for the 10.92%-stretched sample, corresponding to an improvement of 69.32%. This improvement was mainly attributed to the gradual increase in grain size, and the (0001) basal texture was weakened due to the activated non-basal slip as the high-temperature pre-stretching strain levels increased. The visco-plastic self-consistent analysis was performed on the as-received and high-temperature pre-stretched samples. Results confirmed the higher activity of the prismatic slip in 10.92%-stretched sample, leading to divergence and weakening of basal texture components. This results in an augmentation of the Schmid factor under different slip systems. Therefore, it can be concluded that high-temperature pre-stretching technology provided an effective method to enhance the formability of Mg alloy sheets.  相似文献   

17.
In this study, the solidification and deformation behaviors in twin roll cast (TRC) Mg-6Al-X alloys have been investigated. The TRC simulation results showed that the AX60 alloy tended to have lower segregation while the AZ60 had the highest segregation due to the different solidification behavior and thermal properties. Compared to the as-cast microstructure, the segregation area was well matched with the melt to roll nip distance predicted in simulation. Mg alloys with Ca or Sr elements showed weaker textures when compared to A6 alloys rolled at 350 °C. In addition, there was a significant change in (0002) pole figures from strong basal textures to random textures when the rolling temperature increased from 350 °C to 450 °C. This may be attributed to the non-basal slip system activity at high temperatures. The results of visco-plastic self-consistent simulation revealed that critical resolved shear stress of the tension twin increased with increasing rolling temperature. This led to tension twin suppression in compression, which were associated with enhancing the yield isotropy of Mg alloys. Furthermore, the relative activities of basal <a> slip in AX60 alloy were higher than the other Mg alloys. This means they were responsible for enhancing the formability and yield isotropy of Mg alloys.  相似文献   

18.
The sheet formability of current magnesium alloys at ambient temperatures is poor; however, the formability at moderately elevated temperatures can be excellent. Cylindrical cup drawing tests are used to compare the warm forming characteristics of conventional alloy AZ31B with alloys containing lithium oryttrium solid solutions. While both types of experimental alloy can have better room-temperature ductility (εf∼25–30%) than AZ31B, only the lithium alloy has comparable or better deep-drawing capacity. The results are discussed in terms of the sheet anisotropy. Particular attention is drawn to the fact that magnesium alloys exhibit poor bending ductility due to their anisotropy and mechanical twinning-induced tension-compression strength asymmetry.  相似文献   

19.
The influence of texture and grain structure on strain localisation and formability is examined by experiments and numerical simulations for the extruded aluminium alloys AA6063 and AA6082. In the as-extruded condition, the AA6063 alloy has an equiaxed, recrystallised grain structure with strong cube texture, while AA6082 has a fibrous, non-recrystallised grain structure with strong β-fibre texture. By deforming and heat treating the materials after extrusion, a recrystallised equiaxed grain structure with a close to random texture is obtained for both alloys. A comprehensive test programme is conducted to determine the work hardening, plastic anisotropy and formability of the materials. Strain localisation and failure are examined by optical microscopy. An anisotropic plasticity model is calibrated for the materials and used in calculation of forming limit curves by means of the Marciniak–Kuczynski (M–K) analysis for anisotropic materials. It is found that strong cube texture leads to superior formability properties for biaxial stretching while random texture slightly lowers the formability. The strong β-fibre texture of AA6082 in the as-extruded condition leads to reduced formability. The results of the M–K analysis are very conservative compared with the experimental results, and a parametric study is undertaken to investigate the sensitivity of the predicted forming limit curves to some parameters not well defined by the experiments.  相似文献   

20.
The degradation behaviors of the as-extruded and solution treated Mg-3Zn-xAg (x=0, 1, 3, mass fraction, %) alloys, as well as as-extruded pure Mg, have been investigated by immersion tests in simulated body fluid (SBF) at 37 °C. The as-extruded Mg-Zn(-Ag) alloys contained Mg51Zn20 and Ag17Mg54. While the quasi-single phase Mg-Zn(-Ag) alloys were obtained by solution treatment at 400 °C for 8 h. The quasi-single phase Mg-Zn(-Ag) alloys showed lower degradation rate and more homogeneous degradation than corresponding as-extruded Mg alloys. Degradation rate of solid-solution treated Mg-3Zn-1Ag and Mg-3Zn-3Ag was approximately half that of corresponding as-extruded Mg alloy. Moreover, the degradation rate of solid-solution treated Mg-3Zn and Mg-3Zn-1Ag was equivalent to that of as-extruded pure Mg. However, heterogeneous degradation also occurred in quasi-single phase Mg-Zn-Ag alloys, compared to pure Mg. So, preparing complete single-phase Mg alloys could be a potential and feasible way to improve the corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号