首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
使用真空电弧炉熔炼出TiZrHf中熵合金和纯Ti,利用冷轧及退火得到再结晶后的等轴晶粒,并采用 X射线衍射方法研究其相组成;使用扫描电镜和EBSD对TiZrHf合金和纯Ti组织进行表征并进行滑移迹线分析。结果表明: TiZrHf合金与纯Ti都为单相HCP结构且轴比接近,经再结晶后织构类型都为基面织构。在室温下沿RD拉伸变形10%时,TiZrHf合金的锥面滑移开动比例为26%,接近纯Ti中锥面滑移晶粒占比的两倍,且生成{10-12}拉伸孪晶的数量明显多于纯Ti。  相似文献   

2.
采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDS)和电化学等方法,研究了铬含量对FeNiMnCuCr_x系高熵合金微观结构、显微组织和电化学性能的影响。结果表明:FeNiMnCuCr_x系高熵合金均为简单面心立方(FCC)固溶体结构,并且随着铬的添加,合金相结构由一套FCC相向两套FCC相转变,显微组织由柱状树枝晶向等轴树枝晶转变,并且合金的显微组织发生了一定程度的细化;随着铬的添加,FeNiMnCuCr_x系高熵合金的自腐蚀电流密度呈现先增加后降低的趋势;在x=1时,FeNiMnCuCr_x系高熵合金的自腐蚀电流密度最低,为7.8167×10~(-7) A/cm~2。  相似文献   

3.
随着先进工程技术对形状记忆合金性能要求的不断提高,传统形状记忆合金愈发难以满足要求,高熵形状记忆合金应运而生,引起了研究者的极大关注。高熵形状记忆合金相较于传统形状记忆合金具有显著提高的可回复应变、屈服强度、高温物相稳定性和超弹性等特性,具有广阔的应用前景。本文对高熵形状记忆合金的研究现状、马氏体相变和形状记忆效应等进行了简要的论述,并对高熵形状记忆合金目前存在的不足和未来的发展进行了展望。  相似文献   

4.
TiNi形状记忆合金具有优异的形状记忆效应和超弹性,使其广泛应用于航空航天、生物医疗等领域。然而,面对日益增长的在更苛刻环境下服役的需求,传统二元TiNi合金存在着相变温度低、高温环境下功能特性丧失和强度不足等问题,还需要不断优化合金成分和热处理工艺以提升其性能,从而发展出高性能形状记忆合金。TiNi合金的力学性能和功能特性受多种因素的影响,本文主要从合金成分的角度重点概述了各合金化元素对合金微观组织、马氏体相变行为、形状记忆效应和超弹性的影响,并结合高熵合金化思想,综述了近年来在TiNi基高熵形状记忆合金领域取得的进展。最后展望了TiNi基形状记忆合金未来的发展方向及应用前景。  相似文献   

5.
高熵合金是近几年发展起来的新型金属材料,高熵合金的扩散迟滞效应使其具有较好的热稳定性及高温抗氧化性,对其扩散行为的研究对理解高熵合金的相形成、组织和性能演化有重要意义。以AlCoCrFeNi系高熵合金为研究对象,将纯Al和Al_(6.97)Co_(23.26)Cr_(23.26)Fe_(23.26)Ni_(23.26)高熵合金制成扩散偶,研究不同温度下Al在AlCoCrFeNi高熵合金中的扩散行为。利用电子探针检测扩散层的形貌和成分分布,计算了扩散系数和扩散激活能。结果表明:当温度低于723K时,Al与Al_(6.97)Co_(23.26)Cr_(23.26)Fe_(23.26)Ni_(23.26)高熵合金间的元素扩散速率非常慢,在扩散偶的界面处未发现新相的形成;当温度在773~873 K时,在Al与高熵合金的界面处形成明显的扩散反应层,扩散反应层内有新相形成;Al在Al_(6.97)Co_(23.26)Cr_(23.26)Fe_(23.26)Ni_(23.26)高熵合金的扩散激活能为(50.9±6.8) k J/mol;扩散距离随温度的升高而增大。  相似文献   

6.
采用真空电弧熔炼的方法制备了CrxMoNbTiZr系高熵合金(x=0, 0.5, 1, 1.5)。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、显微硬度计以及电化学工作站研究了Cr含量对该高熵合金结构、组织、硬度和耐蚀性能的影响。结果表明,Cr的添加使合金由单相BCC结构转变为富Zr相与富Mo-Nb相的双相BCC结构,随着Cr含量增加,在富Zr相中还有富Cr的Laves相析出;Cr1.5MoNbTiZr合金具有最高硬度765.53 HV,这是由于第二相析出强化、固溶强化与高熵合金晶格畸变的共同作用;Cr的加入增加了CrxMoNbTiZr系高熵合金在质量分数为3.5%NaCl溶液中发生腐蚀倾向,但降低了该系高熵合金的腐蚀速率,同时发现Cr的添加存在一个临界值来保证合金的抗点蚀能力,超过这个临界值合金就会更容易发生点蚀现象。  相似文献   

7.
采用电弧熔炼工艺与真空熔炼快淬系统制备了一系列新型AlNiLaCe高熵非晶合金条带,并研究了(AlNi) / (LaCe)含量变化对高熵非晶合金组织结构与电化学腐蚀行为的影响。利用X射线衍射仪(XRD)、差示扫描量热仪(DSC)和显微硬度计分别研究测定了高熵非晶合金的相结构、热稳定性与硬度;借助扫描电子显微镜(SEM)与X射线能谱分析仪(EDS)表征了合金条带的表面形貌与元素分布情况;通过极化曲线(Tafel)考察了高熵非晶合金在3.5 wt.% NaCl溶液中的电化学腐蚀行为并通过XRD测定了等原子比AlNiLaCe高熵非晶合金条带的腐蚀产物。结果表明:随着Al含量的增多,AlNiLaCe高熵非晶合金由典型的非晶态衍射峰与含Al的金属间化合物一同组成;合金中(AlNi)含量增多导致其热稳定性与条带硬度逐渐提高,Al35Ni35La15Ce15高熵非晶合金最高硬度为470 HV0.1。通过电化学腐蚀实验发现:相比AZ91镁合金,AlNiLaCe系高熵非晶合金的自腐蚀电位更高,腐蚀电流密度比镁合金低1个数量级。  相似文献   

8.
简要介绍高熵合金的发展和其相形成判据。针对高熵合金的大数据体系提出一种新的设计形式,设计并研究了一种新的高熵合金。结果表明: AxByC(100-a-b-x-y)DaEb的设计形式比起以往的伪二元系合金形式,如 AxBCDE,更加符合大数据体系的要求。提出的设计方法能够直观快捷的从高熵合金大数据体系中筛选出预期的合金成分。设计的高熵合金,AlCoCrFeMo0.05Ni2,与目标合金相符,且在700℃下有很好的应用前景。  相似文献   

9.
高熵合金是一种原子排列有序,化学无序的新型多主元合金。通过改变合金元素的种类和浓度,能够调控合金系统层错能及显微组织的相稳定性,进而诱发形变孪晶、马氏体相变等塑性变形机制,最终使合金获得突出的综合力学性能。这种高熵合金的设计理念称为“亚稳工程”。亚稳高熵合金的显微组织、相结构及变形机制与合金体系的层错能密切相关。在FeMnCoCr系亚稳高熵合金中,随着系统层错能降低,面心立方结构稳定性下降,从而激活应变诱导马氏体相变(γ→ε),实现了合金强度和塑性的同时提高。本文主要介绍了FeMnCoCr系亚稳高熵合金的成分设计、制备及加工方法、微观结构和力学性能,并对亚稳高熵合金未来的研究方向进行了展望。  相似文献   

10.
高温力学性能优异的难熔高熵合金在航空发动机热端部件制造中展示出广阔的应用前景。首先,采用真空电弧熔炼法制备了20种NbTiMoVHf(Zr)Si系难熔高熵合金,并通过维氏硬度和拉伸性能测试确定了具有较好力学性能的合金样品,随后利用X射线衍射和电子背散射衍射等研究了其微结构特征。结果表明:NbTiMoVZrSi系高熵合金的力学性能更优,维氏硬度可达723 HV,抗拉强度可达219 MPa;随着Si含量增加,合金的晶粒尺寸减小,析出更多硬质硅化物,且硬度最高的样品小角度晶界含量较高。  相似文献   

11.
In this article, the influence of Co addition on phase transformation behavior and mechanical properties of TiNiFe shape memory alloy was investigated extensively. Differential scanning calorimetry (DSC) measurements shows that martensitic start transformation temperatures (Ms ) decrease drastically with increasing Co content, while the R phase transformation start temperatures (Rs ) vary slightly. Nevertheless, the substitution of Ni with Co does not exert substantial influence on the two-stage transformation behavior of the TiNiFe alloy. The results from stress-strain curves indicate that higher critical stress for stress-induced martensitic transformation (rSIM ) has been obtained because of Co addition. In such cases, the Ti50Ni48Fe1 Co1.0 alloy maintains a good shape memory effect, and a maximum recoverable strain of 7.5 % can be obtained.  相似文献   

12.
In this work, transformation behaviors and mechanical properties of cold-rolled shape memory alloy TisoNia9Fel by severe plastic deformation (SPD) were intensively investigated. The phase transformation behaviors, phase analysis, and microstructures were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM), respectively. Tensile testing was performed to analyze the effect of SPD on the mechanical properties and shape memory of TisoNi49Fel alloy. When the thickness reduction is beyond 30 %, the martensitic transformation is suppressed. After cold-rolling, the alloy is mainly com- posed of B2 parent phases with some stress-induced martensitic B 19t phases, and high density of dislocations are generated and the grains are obviously refined. The yield stress ab significantly raises from 618 MPa of 0 % cold rolling to 1,338 MPa of 50 % SPD. Shape-memory effect increases from 6.5 % without cold rolling to 8.5 % after 30 % SPD, ascribed to the induced defects in cold rolling. Those results indicate that TisoNi49Fel alloy has improved mechanical properties and potential commercial applications after SPD.  相似文献   

13.
Development of shape memory alloys is always one of the most important directions for functional Ti alloys. The Ti-Zr-Mo series alloys with various Mo contents were prepared. The main aim of the current work is to investigate the effects of Mo on martensitic transition and shape memory effect of Ti-Zr alloy. The X-ray diffraction and transmission electron microscope results indicate that the phase constitution of the examined alloys is greatly dependent on Mo content. The Ti-Zr-Mo alloy with 2 wt% Mo is composed mainly of α′ martensite and a few β phase. As the Mo content increased to 4 wt%, the Ti-50Zr-4Mo alloy consists of α″ martensite and β phase. As the Mo content further increased to 8 wt%, the alloy consists mainly β phase and a barely detectable amount of α″ martensite. Thermal analysis shows that the reverse martensitic transition temperature of the examined alloys decreases with the increasing of Mo. The reverse martensitic transition start, As, temperature is approximately 584 °C for Ti-50Zr-2Mo alloy and 519 °C for Ti-50Zr-4Mo, respectively. And the martensitic transition start, Ms, temperature is approximately 553 °C and 501 °C for that two alloys, respectively. But no obvious exothermic and/or endothermic peak can be observed in DSC curve of Ti-50Zr-8Mo alloy. Furthermore, the effect of Mo content on shape memory recovery ratio, η, of the examined alloys was also investigated. Results show that the η first increases and then decreases with the increasing of Mo. The alloy with 4 wt% Mo has the maximum η approximately 13.8%. The influencing mechanism of Mo content on shape memory effect of the examined alloys was also discussed. This findings not only supplied a series of shape memory TiZr-based alloys, but also enriched and deepened the theory of shape memory effect.  相似文献   

14.
As a β stabilizing element in Ti-based alloys, the effect of Mo on phase constitution, microstructure, mechanical and shape memory properties was investigated. Different compositions of Ti–xMo–3Sn alloys (where x=2, 4, 6, at.%) were prepared by arc melting. A binary composition of Ti–6Mo alloy was also prepared for comparison. Ti–xMo–3Sn alloys show low hardness and high ductility with 90% reduction in thickness while Ti–6Mo alloy shows high hardness, brittle behavior, and poor ductility. Field emission scanning electron microscopy (FESEM) reveals round morphology of athermal ω (ωath) precipitates. The presence of ωath phase is also confirmed by X-ray diffraction (XRD) in both as-cast and solution-treated and quenched conditions. The optical microscopy (OM) and FESEM show that the amount of martensite forming during quenching decreases with an increase in Mo content, which is also due to β→ω transformation. The hardness trends reinforce the presence of ωath too. The shape memory effect (SME) of 9% is the highest for Ti–6Mo–3Sn alloy. The SME is trivial due to ωath phase formation; however, the increase in SME is observed with an increase in Mo content, which is due to the reverse transformation from ωath and the stress-induced martensitic transformation. In addition, a new and very simple method was designed and used for shape memory effect measurement.  相似文献   

15.
Three different NiTi-based alloys, whose nominal compositions were Ni50Ti50, Ni49Ti49Fe2, Ni45Ti51.8Fe3.2 (mole fraction, %), respectively, were used in the current research to understand the influence of Fe addition on phase transformation behavior in NiTi shape memory alloy (SMA). The microstructure and phase transformation behavior of the alloys were investigated by optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis. The results show that the matrix of the Ni50Ti50 alloy consists of both B19′ (martensite) phase and B2 (austenite) phase. Moreover, the substructures of twins could be observed in the B19′ phase. However, the ternary alloys of NiTiFe exhibit B2 phase in the microstructures. Such microstructures were also characterized by large presence of Ti2Ni precipitates dispersed homogenously in the matrix of the two kinds of alloys. The addition of Fe to the NiTi SMA results in the decrease in phase transformation temperatures in the ternary alloys. Based on mechanism analysis, it can be concluded that this phenomenon is primarily attributed to atom relaxation of the distorted lattice induced by Ni-antisite defects and Fe substitutions during phase transformation, which enables stabilization of B2 phase during phase transformation.  相似文献   

16.
Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 °C for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage.  相似文献   

17.
In present work, transformation hysteresis and shape memory effect of an ultrafine-grained Ti44Ni47Nb9 alloy processed by ECAP were studied. After deformation, the ECAPed sample showed a much wider transformation hysteresis than the initial sample due to the enlarged strength mismatch between matrix and β-Nb phase. The shape memory effect and its cycling stability of the ECAPed sample were obviously improved.  相似文献   

18.
The nickel-titanium shape memory alloys (NiTi SMAs) have a very high potential for a wide variety of applications thanks to their unique mechanical properties: shape memory effect and pseudoelasticity. However, they have been proved to be more challenging to cut than other advanced engineering materials because of their high ductility, crystal-oriented and stress-oriented mechanical properties. In stark contrast to the extensive work on the metallurgical/microstructural properties of the SMA, there is limited research regarding non-conventional machining of this group of special alloys.Waterjet technology is well-known for cutting advanced difficult-to-cut materials owing to its benefits of reduced mechanical and thermal damages to workpiece surfaces. This paper reports for the first time the use of waterjet technology to mill the functional shape memory alloys and thus to open new avenues for the utilisation of these alloys for advanced engineering applications (e.g. aerospace, medical fields). However, when it comes to NiTi SMAs (characterised by low temperature phase martensite and parent phase austenite), the insignificant waterjet temperatures become critical to the material behaviour as their crystal structures are sensitive to the variations in both temperature and mechanical compression. This makes the processing (particularly waterjet controlled-depth milling) a real challenging task.By taking into consideration both of the waterjet temperatures at different material removal conditions (i.e. with and without abrasives in the focussing tube) and the transformation temperatures of NiTi, three different working zones (100% martensite; mix of austenite and martensite; 100% austenite) under waterjet process have been proposed. In addition, a combined phase and stress-strain diagram for shape memory effect in martensitic phase and pseudoelasticity in austenite phase of NiTi has been suggested. In this paper, Ni49.8Ti50.2 shape memory alloy was considered in which its transition temperature range is overlapped with the waterjet operating temperature; two approaches of waterjet processes (plain and abrasive waterjet milling) were proposed so as to investigate the mechanical and metallurgical effect provoked by the relationship between operating temperatures and transformation temperatures. It was found that abrasive waterjetting is more viable than plain waterjetting for controlled-depth milling of NiTi shape memory alloys.  相似文献   

19.
The common Ti44Ni47Nb9 and Ti50Ni40Cu10 ternary shape memory alloys were produced by sintering techniques and the microstructure, phase structure and phase transformation behaviour were investigated. A combination of pre-alloyed binary TiNi powder and elemental Nb, Ni and Cu, Ti powders, respectively, were used. In contrast to the use of pre-alloyed ternary powders, which have to be produced in each new composition, a higher flexibility in the alloy composition becomes possible. In case of the Ti44Ni47Nb9 alloy, liquid phase sintering was done to obtain the eutectic phase structure known from cast material. In case of the Ti50Ni40Cu10 alloy, the pore size and porosity can be improved by choosing a two-step sintering process, as a eutectic melt between Ti and Cu is formed at low temperatures which influences the sintering behaviour. Controlling the impurity contents and the resulting secondary phases is necessary for both alloys in the same way as for binary TiNi alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号