首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-phase Bi0.85La0.1Ho0.05FeO3 multiferroic ceramics were prepared by a rapid liquid sintering method. The ceramics exhibited an obvious ferroelectric loop with a remnant polarization of 11.2 μC/cm2 and also showed weak ferromagnetism with the remnant magnetization of 0.179 emu/g at room temperature. A considerable enhancement of the polarization on magnetic poling and a dielectric anomaly in the vicinity of the antiferromagnetic transition temperature due to the intrinsic magnetoelectric coupling effect were observed in Bi0.85La0.1Ho0.05FeO3 ceramics. The dielectric constant for the Bi0.8La0.1Ho0.05FeO3 samples at room temperature decreases with increasing applied magnetic fields, and the coupling coefficient (?′(H) − ?′(0))/?′(0) reaches −1.04% at H = 10 kOe.  相似文献   

2.
In this paper, we report on the structure, ferroelectric/magnetoelectric properties and improvement of leakage current density of (Bi0.85Nd0.15)FeO3 (BNFO) thin films deposited on Pt(1 1 1)/Ti/SiO2/Si substrates from the polymeric precursor method. X-ray patterns and Rietveld refinement indicated that BNFO thin films with a tetragonal structure can be obtained at 500 °C for 2 h in static air. Field emission scanning electron, atomic force and piezoelectric force microscopies showed the microstructure, thickness and domains with polarization-oriented vectors of BNFO thin films. Ferroelectric and magnetoelectric properties are evident by hysteresis loops. The magnetoelectric coefficient measurement was performed to show the magnetoelectric coupling behavior. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. Piezoresponse force microscopy micrographs reveal a polarization reversal with 71° and 180° domain switchings and one striped-domain pattern oriented at 45° besides the presence of some nanodomains with rhombohedral phase involved in a matrix with tetragonal structure. The cluster models illustrated the unipolar strain behavior of BNFO thin films. The leakage current density at 5.0 V is equal to 1.5 × 10−10 A/cm2 and the dominant mechanism in the low-leakage current for BNFO thin films was space-charge-limited conduction.  相似文献   

3.
Bi1−xHoxFeO3 (x = 0.00, 0.05, 0.10, 0.15 and 0.20) polycrystalline ceramics were synthesized by a solid-state reaction and their structural, absorption, Raman scattering, impedance and magnetic properties were investigated. The substitution of rare earth Ho for Bi was found to decrease the impurity phase in BiFeO3 ceramics. There appears an anomalous change in the lattice constants, optical band gap as well as the impedance spectroscopy and magnetization of samples at x = 0.10, suggesting a limit of dissolubility of Ho doped ions in BiFeO3. Additionally, the Raman measurement performed for the lattice dynamics study of Bi1−xHoxFeO3 samples reveals a band centered at around 1000-1300 cm−1 which is associated with the resonant enhancement of two-phonon Raman scattering in the multiferroic Bi1−xHoxFeO3 samples. Ho-doped BiFeO3 also showed a ferromagnetic-like behavior with Mr = 1070 × 10−4 and Ms = 1.60 emu/g for optimum content x = 0.10, which is similar to the solid solution system of BiFeO3.  相似文献   

4.
The crystal structure, microstructure, dielectric and ferroelectric properties of (1 − x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics with x = 0, 0.03, 0.05, 0.07 and 0.1 are investigated. A structural variation according to the system composition was investigated by X-ray diffraction (XRD) analyses. The results revealed that the synthesis temperature for pure perovskite phase powder prepared by the present sol-gel process is much lower (800 °C), and a rhombohedral-tetragonal morphotropic phase boundary (MPB) is found for x = 0.07 composition which showing the highest remanent polarization value and the smallest coercive field. The optimum dielectric and piezoelectric properties were found with the 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 composition. The piezoelectric constant d33 is 120 pC/N and good polarization behaviour was observed with remanent polarization (Pr) of 12.18 pC/cm2, coercive field (Ec) of 2.11 kV/mm, and enhanced dielectric properties ?r > 1500 at room temperature. The 0.93Na0.5Bi0.5TiO3-0.07BaTiO3-based ceramic is a promising lead-free piezoelectric candidate for applications in different devices.  相似文献   

5.
Lead-free (1 − x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 (BNBT-xKN, x = 0-0.08) ceramics were prepared by ordinary ceramic sintering technique. The piezoelectric, dielectric and ferroelectric properties of the ceramics are investigated and discussed. The results of X-ray diffraction (XRD) indicate that KNbO3 (KN) has diffused into Bi0.47Na0.47Ba0.06TiO3 (BNBT) lattices to form a solid solution with a pure perovskite structure. Moderate additive of KN (x ≤ 0.02) in BNBT-xKN ceramics enhance their piezoelectric and ferroelectric properties. Three dielectric anomaly peaks are observed in BNBT-0.00KN, BNBT-0.01KN and BNBT-0.02KN ceramics. With the increment of KN in BNBT-xKN ceramics, the dielectric anomaly peaks shift to lower temperature. BNBT-0.01KN ceramic exhibits excellent piezoelectric properties and strong ferroelectricity: piezoelectric coefficient, d33 = 195 pC/N; electromechanical coupling factor, kt = 58.9 and kp = 29.3%; mechanical quality factor, Qm = 113; remnant polarization, Pr = 41.8 μC/cm2; coercive field, Ec = 19.5 kV/cm.  相似文献   

6.
BaTi0.87Sn0.13O3 (BTS13) nanopowder was prepared by low-temperature aqueous synthesis (LTAS) method. The evolution of the structure and microstructure of the precursor precipitate, heated at temperatures up to 1000 °C was studied by TGA, FT-IR, SEM and XRD techniques. The dried precipitate showed a microstructure consisting of nano-sized grains (∼40 nm) with great tendency to agglomeration. BaTi0.87Sn0.13O3 single phase was obtained at 800 °C. The ceramics prepared from as-obtained BTS13 powders (60-70 nm) show good dielectric and ferroelectric characteristics. The dielectric constant was about 4800 and the dielectric loss (tan δ) was 0.229 at 1 kHz and at the Curie temperature (31 °C). The remanent polarization (Pr) and the coercive field (EC) of Ba0.97Ho0.03TiO3 ceramics, at 1 kHz, were Pr = 13 μC/cm2 and EC = 0.89 kV/cm. The ferroelectric parameters EC and Pr decrease with increasing frequency in the domain 100 Hz to 10 kHz.  相似文献   

7.
Bi0.89Ti0.11FeO3 thin films with the thicknesses of 200-440 nm were fabricated on the 40-nm-thick PbZr0.2Ti0.79Nb0.01O3 (PZTN)-buffered Pt(1 1 1)/Ti/SiO2/Si substrates using a metal organic decomposition process. As a result of the good insulating property and high breakdown characteristic of the PZTN buffer layer, the leakage currents in the Bi0.89Tb0.11FeO3 films are significantly reduced. All the films show well-saturated and rectangular P-E hysteresis loops without any evident leaky behavior. The remnant polarization Pr and coercive field Ec for all Bi0.89Ti0.11FeO3 films are around 45-50 μC/cm2 and 200 kV/cm, respectively, and show weak dependent on the film thickness. The 200-nm-thick Bi0.89Ti0.11FeO3 film exhibits better fatigue-free characteristic and charge-retaining ability, and the domain backswitching is significantly restrained due to the strong anti-aging ability of the PZTN buffer layer.  相似文献   

8.
The structure, ferroelectric and magnetic properties of (1 − x)BiFeO3-xBi0.5Na0.5TiO3 (x = 0.37) solid solution fabricated by a sol-gel method have been investigated. X-ray diffraction and Raman spectroscopy measurements show a single-phase perovskite structure with no impurities identified. Compared with pure BiFeO3, the coexistence of ferroelectricity and ferrimagnetism have been observed at room temperature for the solution with remnant polarization Pr = 1.41 μC/cm2 and remnant magnetization Mr = 0.054 emu/g. Importantly, a magnetic transition from ferrimagnetic (FM) ordering to paramagnetic (PM) state is observed, with Curie temperature TC ∼ 330 K, being explained in terms of the suppression of cycloid spin configuration by the structural distortion.  相似文献   

9.
Lead-free (1 − x − y)Bi0.5Na0.5TiO3-xBaTiO3-yBi0.5Ag0.5TiO3 (BNT-BT-BAT-x/y, x = 0-0.10, y = 0-0.075) piezoelectric ceramics were synthesized by conventional oxide-mixed method. The microstructure, ferroelectric, and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases of BNT-BT-BAT-x/0.04 ceramics is formed at x = 0.06-0.08. The addition of BAT has no obvious change on the crystal structure of BNT-BT ceramics while it causes the grain size of the ceramics to become more homogenous. Near the MPB, the ceramics with x = 0.06 and y = 0.05-0.06 possess optimum electrical properties: Pr ∼ 42.5 μC/cm2, Ec ∼ 32.0 kV/cm, d33 ∼ 172 pC/N, kp ∼ 32.6%, and kt ∼ 52.6%. The temperature dependences of kp and polarization versus electric hysteresis loops reveal that the depolarization temperature (Td) of BNT-BT-BAT-0.06/y ceramics decreases with increasing y. In addition, the polar and non-polar phases may coexist in the BNT-BT-BAT-x/y ceramics above Td.  相似文献   

10.
0.99(Bi0.5Na0.5TiO3)-0.01(SrNb2O6) was prepared by simple solid state reaction route. Material stabilized in rhombohedral perovskite phase with lattice constants a = 3.9060 Å, α = 89.86° and ah = 5.4852 Å, ch = 6.7335 Å for hexagonal unit cells. Density of material was found 5.52 gm/cm3 (92.9% of theoretical one) in the sample sintered at 950 °C. The temperature dependent dielectric constant exhibits a broad peak at 538 K (?m = 2270) at 1 kHz that shows frequency dependent shifts toward higher temperature - typical relaxor behavior. Modified Curie-Weiss law was used to fit the dielectric data that exhibits almost complete diffuse phase transition characteristics. The dielectric relaxation obeys the Vogel-Fulcher relationship with the freezing temperature 412.4 K. Significant dielectric dispersion is observed in low frequency regime in both components of dielectric response and a small dielectric relaxation peak is observed. Cole-Cole plots indicate polydispersive nature of the dielectric relaxation; the relaxation distribution increases with increase in temperature.  相似文献   

11.
Fine-grained Pb(Zr0.53Ti0.47)O3-(Ni0.5Zn0.5)Fe2O4 (PZT-NZFO) magnetoelectric (ME) composite ceramics were fabricated by a modified hybrid process at a low sintering temperature of 900 °C. Well-controlled crystallized grain size and homogeneous microstructure with a good mixture of two phases were observed in the ceramics. The ceramics show coexistence of ferrimagnetic and ferroelectric phases with well-formed ferromagnetic and ferroelectric hysteresis loops at room temperature. A significant ME effect was observed with a ME coefficient of 0.537 V cm−1 Oe−1 in the vicinity of electromechanical resonance. In addition, high capacitance can be obtained at low frequency, and magnetic properties in the ceramics can be tailored by the grain size of the ferromagnetic particles in a simple and flexible way.  相似文献   

12.
Nanocomposites containing nanocrystals of Te2NiMnO6 were synthesized by suitable heat treatment of a glass with composition 2 TeO2·NiO·MnO (molar ratio). The crystallites had dimensions in the range 17-41 nm. X-ray diffraction data of the specimens were analyzed by using a TREOR computer programme. Lattice parameters extracted by this method indicated that the crystal symmetry was monoclinic. The nanocomposites exhibited weak ferromagnetism in the temperature range 2-300 K. They also showed ferroelectric hysteresis at room temperature with a remanent polarization of 0.015 μC/cm2. The specimens showed a magnetodielectric (MD) behavior with dielectric constant increasing as a function of applied magnetic field. The MD parameter obtained in the present system was 0.55%.  相似文献   

13.
14.
The Bi0.86Sm0.14FeO3 (BSFO) and Bi0.86Sm0.14Fe1 − xMnxO3 (BSFMO) (x = 0.01, 0.03, 0.05) thin films were deposited on indium tin oxide/glass substrates via a metal organic deposition method. 1 at.% Mn doping leads to an evident reduction of the leakage current in BSFO film. More importantly, the Bi0.86Sm0.14Fe0.99Mn0.01O3 film exhibits the lowest coercive field (Ec = 272 kV/cm), the largest remanent polarization (Pr = 53.6 μc/cm2) and the remanent out-of-plane piezoelectric coefficient (d33 = 146 pm/V). However, further increase of Mn doping content results in the deterioration of the charge retaining capability and the piezoelectric properties of the films. The negative influence of high Mn doping contents was discussed based on the structure change and the contribution of irreversible movement of non-180° domain walls in the aged films.  相似文献   

15.
Lead-free piezoelectric ceramics (0.8 − x)BaTiO3-0.2Bi0.5Na0.5TiO3-xBaZrO3 (BT-BNT-xBZ, 0 ≤ x ≤ 0.08) doped with 0.3 wt% Li2CO3 were prepared by conventional solid-state reaction method. With the Li2CO3 doping, all the ceramics can be well sintered at 1170-1210 °C. The phase structure, dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between tetragonal and pseudocubic phases exists at x = 0.03-0.04. The addition of Zr can improve the piezoelectric properties of BT-BNT ceramics. Furthermore, a relaxor behavior is induced and the tetragonal-cubic phase transition shifts towards lower temperatures after the addition of Zr. The ceramics with x = 0.03 possess the optimum electrical properties: d33 = 72 pC/N, kp = 15.4%, ?r = 661, Pr = 18.5 μC/cm2, Ec = 34.1 kV/cm, Tc = 150 °C.  相似文献   

16.
Lead-free piezoelectric ceramics Sr2−xCaxNaNb5O15 + y wt% MnO2have been prepared by the conventional solid state reaction method. Our results reveal that Ca2+and Mn ions have entered into the Sr2NaNb5O15 lattices to form a solid solution with tungsten-bronze structure. The substitution of Ca2+ induces a decrease in piezoelectric coefficient d33, electromechanical coupling factors kp and kt, while, the addition of Mn ions decreases the sintering temperature and effectively promotes the densification of the ceramics. The effect of substitution of Ca2+and Mn ions on the structure, electrical properties and diffused phase changing were investigated systematically. For the ceramic with x = 0.05 and y = 0.5, the piezoelectric, dielectric and ferroelectric properties become optimum, giving a piezoelectric coefficient d33 = 190 pC/N, electromechanical coupling factors kp = 13.4% and kt = 36.5%, ?r = 2123, loss tangent tan δ = 0.038, remanent polarization Pr = 4.76 μC/cm2, coercive field Ec = 12.68 kV/cm, and Curie temperature Tc = 260 °C.  相似文献   

17.
Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 (BNT-BT-BKT) lead-free piezoceramics with compositions near the rhombohedral-tetragonal morphotropic phase boundary (MPB) were prepared and investigated. At room temperature, all ceramics show excellent electrical properties. In this study, the best properties were observed in 0.884BNT-0.036BT-0.08BKT, with the remnant polarization, bipolar total strain, unipolar strain, piezoelectric constant, and planar electromechanical coupling factor being 34.4 μC cm−2, 0.25%, 0.15%, 122 pC N−1, and 0.30, respectively. Detailed analysis of the temperature dependence of polarization-electric field (P-E) loops and bipolar/unipolar strain-electric field (S-E) curves of this composition revealed a ferroelectric-antiferroelectric phase transition around 100 °C. Around this temperature, there is a significant shape change in both P-E and S-E curves, accompanied by enhanced strain and decreased polarization; the largest recoverable strain reaches 0.42%. These results can be explained by the formation of antiferroelectric order and the contribution of field-induced antiferroelectric-ferroelectric phase transition to piezoelectric response. Our results indicate that BNT-BT-BKT lead-free piezoceramics can have excellent electrical properties in compositions near the MPB and also reveal some insight into the temperature dependence of the electrical performance with the MPB composition.  相似文献   

18.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

19.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

20.
Ferroelectric PMN-PT thin films with a thickness of 600 nm were epitaxially grown on buffered Si (0 0 1) substrates at a substrate temperature that ranged from 550 to 700 °C using pulsed laser deposition (PLD). LaNiO3 (LNO) electrode thin films with a resistivity of ∼1900 μΩ cm were epitaxially grown on CeO2/YSZ buffered Si (0 0 1) substrates. The PMN-PT thin films grown at 600 °C on LNO/CeO2/YSZ/Si substrates had a pure perovskite and epitaxial structure. The PMN-PT films exhibited a high dielectric constant of about 1818 and a low dissipation factor of 0.04 at a frequency of 10 kHz. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization of 11.1 μC/cm2 and a coercive field of 43 kV/cm, were obtained in the epitaxial PMN-PT films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号