首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
6063铝合金微弧氧化膜性能研究   总被引:4,自引:0,他引:4  
用微弧氧化方法,在6063铝合金基体上制备了微弧氧化膜,对陶瓷层的组成、结构和硬度进行了研究。结果表明,膜层主要由α—Al2O3和γ-Al2O3相组成,膜/基体的界面系次金结合,结合强度高,且硬度和弹性模量有了大幅度的提高。  相似文献   

2.
2A06铝合金表面微弧氧化陶瓷层摩擦学特性   总被引:3,自引:0,他引:3  
采用微弧氧化技术,以硅酸盐为主要电解液,在2A06铝合金表面制备出高硬度、高耐磨性的微弧氧化陶瓷膜。用扫描电镜观测膜层的显微结构,用X射线衍射分析其相组成,并对膜层进行耐磨损和抗冲蚀试验。结果表明,氧化时间越长,2A06铝合金表面陶瓷层越厚,陶瓷层粗糙度也越高。陶瓷层由过渡层、致密层和疏松层组成。过渡层与基体和致密层结合紧密。致密层的相组成主要为α-Al2O3、γ-Al2O3,疏松层的相组成主要为α-Al2O3、γ-Al2O3以及Al6Si2O3。致密层中的α-Al2O3相的含量远高于疏松层。从试样边缘到试样中心硬度逐渐降低,最高硬度出现在试样表面边缘向内5~20 mm处,平均HV硬度可达20.96 GPa。2A06铝合金的耐磨性比较差,磨轮转速从100 r/min增至400 r/min时,磨损量不断增加且呈线性分布。微弧氧化制备的陶瓷层磨损量在磨损开始时(100 r/min)稍高,磨轮转速到600 r/min时磨损量趋于稳定,磨轮转速到1600 r/min时磨损量仍然呈现较低水平。陶瓷层的冲蚀体积损失率也远低于2A06铝合金基体。  相似文献   

3.
利用微弧氧化技术在6061铝合金表面原位生长ZrO2-Al2O3复合陶瓷涂层,通过SEM、XRD及纳米压痕仪对陶瓷涂层的微观结构、相组成、硬度及杨氏模量进行分析,并对其热震及高载荷耐磨性能进行研究。结果表明:陶瓷涂层由疏松层和致密层组成,其表面分布较多微孔;陶瓷涂层主要由t-ZrO2、γ-Al2O3和α-Al2O3相组成,其维氏硬度和杨氏模量分别为19.569和307.927GPa,约为6061铝合金的8倍和3倍;此外,陶瓷涂层还具有较高的抗热震性和耐磨性。  相似文献   

4.
2A12航空铝合金微弧氧化陶瓷层生长过程   总被引:2,自引:0,他引:2  
研究2A12铝合金微弧氧化陶瓷层的生长规律,分析不同氧化时间陶瓷层的表面和截面形貌、成分和相组成。研究表明,陶瓷层总厚度接近于线性增长,向外生长速度比向基体内生长的速率稍大,而致密层占总膜层的比例先快速增加,其后略微下降。SEM结果显示,陶瓷层表面有大量呈火山口状的等离子放电痕迹,随氧化时间延长,厚度在整个表面上趋于相等,界面处氧化膜变得比较平坦。陶瓷层主要由α-Al2O3和γ-Al2O3相组成,随着氧化时间的延长,γ-Al2O3相在陶瓷层中的含量先增加后减小,而α-Al2O3相的含量随氧化时间的延长逐渐提高。  相似文献   

5.
在电解液中添加不同含量的Li2SO4,在铸造铝合金表面制得微弧氧化陶瓷层。采用SEM、XRD和EDS等分析陶瓷层表面形貌及物相组成。结果表明,随着电解液中Li2SO4加入量的增加,微弧氧化膜厚度增加,膜层表面变得粗糙。微弧氧化膜主要是由α-Al2O3、γ-Al2O3、莫来石和非晶相组成。  相似文献   

6.
电压参数对铝合金微弧氧化陶瓷层相组成的影响   总被引:5,自引:0,他引:5  
通过XRD分析,研究了正向、负向电压对铝合金微弧氧化陶瓷层相组成的影响.结果表明,陶瓷层主要由α-Al2O3相、γ-Al2O3相和mullite(莫来石)相组成,α-Al2O3相在陶瓷层内侧的质量分数高于外层,而mullite相的分布则相反.单独提高正向电压时,α-Al2O3相的质量分数先增后减;而单独提高负向电压时,α-Al2O3相的质量分数明显提高.γ-Al2O3质量分数的变化与α-Al2O3相反.电压变化时,内侧的mullite相的质量分数变化不大,但外侧的质量分数随电压提高而增加.  相似文献   

7.
利用微等离子体氧化技术,在7075铝合金表面原位生成了陶瓷层.采用正交实验法确定了在硼酸盐体系中进行微等离子体氧化的最佳电解液配方,通过SEM及XRD分析了陶瓷层的形貌及相组成.结果表明:陶瓷层硬度可达到812HV0.1;陶瓷层表面形貌均匀,膜层致密,主要由γ-Al2O3组成.  相似文献   

8.
研究了不同电流密度对ZA43微弧氧化膜层的表面形貌、膜厚、硬度以及膜的组成相的影响等问题。结果表明:随着电流密度的增大,膜层表面的孔洞尺寸变大;氧化膜厚度逐渐增大,但是增加的速度变得缓慢;膜层硬度在一定电流密度范围内增加,最终趋于稳定;膜层主要相成分为α-Al2O3和γ-Al2O3,增加了ZA43高铝锌基合金的表面硬度,耐磨性和耐腐蚀性能。  相似文献   

9.
铝合金表面微弧氧化陶瓷层耐磨性   总被引:1,自引:1,他引:0  
利用微弧氧化技术在7075铝合金表面形成微弧氧化陶瓷膜层,通过SEM、XRD手段分析了微弧氧化陶瓷层的显微结构、表面形貌和相组成,并在HIT-Ⅱ摩擦磨损试验机上测试了陶瓷膜层的摩擦学性能.结果表明:7075铝合金表面的微弧氧化陶瓷膜层由疏松层、致密层构成,其相组成主要是α-Al2O3和γ-Al2O3两相;氧化陶瓷层与基体结合良好,厚度为25~45μm,表面硬度可达到1900HV0.1左右;微弧氧化表面处理技术可以显著提高铝合金的表面耐磨性,在与GCr15钢球对磨时,膜层具有较低的磨损率,但摩擦因数相对较高.  相似文献   

10.
在Na2SiO3-NaOH体系的电解液中,对Mn元素含量不同的1070纯铝及3003铝合金进行等离子体电解氧化。对所得陶瓷层的厚度及显微硬度进行了测试,并分析了陶瓷层的微观形貌及相组成。结果表明:1070纯铝表面所形成的陶瓷层由α-Al2O3及γ-Al2O3组成,而3003铝合金表面所形成的陶瓷层则由γ-Al2O3组成;处理时间相同时,3003铝合金所形成的陶瓷层较纯铝1070所形成的陶瓷层更厚,但显微硬度更低,致密性下降,Mn元素对反应过程中高温氧化铝相的形成有一定的抑制作用。  相似文献   

11.
The rheology feature of Sb, Bi melt and alloys was studied using coaxial cylinder high-temperature viscometer. The results showed that the curve of torsion-rotational speed for Sb melt presents a linear relation in all measured temperature ranges, whereas for the Bi melt, the curve presents obvious non-Newtonian feature within the low temperature range and at relative high shear stress. The rheology feature of Sb80Bi20 and Sb20Bi80 alloy melts was well correlated with that of Sb and Bi, respectively. It is considered that the rheology behavior of Sb melt plays a crucial role in Sb80Bi20 alloy and that of Bi melt plays a crucial role in Sb20Bi80 alloy.  相似文献   

12.
The effect of heat treatment on the microstructures and mechanical properties of a newly developed austenitic heat resistant steel(named as T8 alloy) for ultra-supercritical applications have been studied. Results show that the main phases in the alloy after solution treatment are γ and primary MX. Subsequent aging treatment causes the precipitation of M_(23)C_6 carbides along the grain boundaries and a small number of nanoscale MX inside the grains. In addition, with increasing the aging temperature and time, the morphology of M_(23)C_6 carbides changes from semi-continuous chain to continuous network.Compared with a commercial HR3C alloy, T8 alloy has comparable tensile strength, but higher stress rupture strength. The dominant cracking mechanism of the alloy during tensile test at room temperature is transgranular, while at high temperature, intergranular cracking becomes the main cracking mode, which may be caused by the precipitation of continuous M_(23)C_6 carbides along the grain boundaries. Typical intergranular cracking is the dominant cracking mode of the alloy at all stress rupture tests.  相似文献   

13.
《中国铸造》2014,(6):540-541
Organized by Suppliers China Co., Ltd and co-organized by the National Technical Committee 54 on Foundry of Standardization Administration of China, the 15th Global Foundry Sourcing Conference 2014 (hereinafter referred to as FSC 2014) was successfully held on Sep. 23rd in Grand Regency Hotel, Qingdao. More than 500 delegates from home and abroad attended this conference, including over 130 purchasers from 20 countries and 380 domestic and foreign suppliers.  相似文献   

14.
15.
By rolling and nitriding processes, 0.23- to 0.3-mm-thick grain-oriented 6.5 wt% silicon steel sheets were produced. The core losses of grain-oriented 6.5 wt% silicon steel at frequencies ranging from 400 Hz to 20 k Hz were lower than that of the grain-oriented 3 wt% silicon steel with the same thickness by 16.6–35.8%. The secondary recrystallization behavior was investigated by scanning electron microscopy, energy-dispersive spectroscopy, and electron backscattered diffraction. The results show that the secondary recrystallization in high-silicon steel sheets develops more completely as the nitrogen content increases after nitriding, secondary recrystallized grain sizes become larger, and the sharpness of Goss texture increases. Because more {110}116 grains in the subsurface and the central layer of the sheets have a lot of 20°–45° high-energy boundaries in addition to Goss grains, {110}116 can be the main component through selective growth during secondary recrystallization when the inhibitor quantity is not enough and inhibitor intensity is weaker. The increases in nitrogen content can increase the inhibitor intensity and hinder abnormal growth of a mount of {110}116 grains and therefore enhance the sharpness of Goss texture.  相似文献   

16.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

17.
LASER CLADDED TiCN COATINGS ON THE SURFACE OF TITANIUM   总被引:3,自引:0,他引:3  
Laser cladded coatings of TiCN were produced on the surface of titanium. To obtain the optimal techniques, several conditions were tested by varying the laser scanning rate. The choice of shielding gas was also studied. The cladded coatings were then evaluated from the surface mechanics point of view based on their microhardness. The microstructure of some interesting samples was investigated by optical micrographs (OM). The results showed that under the condition of fixed pulse frequency and pulse width, the laser scanning rate and the shielding gas are the main factors influencing the components of coatings. TiCN coatings were decompounded and oxidized during the cladding process in the condition of no shielding gas of N2. X-ray diffraction results indicated that the composite coatings composed of TiCN, TiC, Ti2N, and TiO2 were produced using appropriate techniques. The results indicated that the best condition in terms of the surface microhardness is obtained when the scanning rate is 1.5mm / s, the pulse frequency is 15Hz, the pulse width is 3.0ms, and N2 is chosen as the shielding gas. The microhardness of the composite coatings is about 1331kg · mm - 2, which is about 4 times that of the substrate. The optical micrographs indicated that the cladding zone is made up of TiCN, TiO2, and some interdendritic Ti, but the diffusion zone mainly consists of the dendrites phase, and the cladded depth is about 80m, which is more than 2 times that of the laser nitrided sample. There were no microcracks or air bubbles in the cladded sample, which was cladded using the above optimal techniques.  相似文献   

18.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

19.
X80 pipeline steel plates were friction stir welded(FSW) under air, water, liquid CO_2 + water, and liquid CO_2 cooling conditions, producing defect-free welds. The microstructural evolution and mechanical properties of these FSW joints were studied. Coarse granular bainite was observed in the nugget zone(NZ) under air cooling, and lath bainite and lath martensite increased signifi cantly as the cooling medium temperature reduced. In particular, under the liquid CO_2 cooling condition, a dual phase structure of lath martensite and fi ne ferrite appeared in the NZ. Compared to the case under air cooling, a strong shear texture was identifi ed in the NZs under other rapid cooling conditions, because the partial deformation at elevated temperature was retained through higher cooling rates. Under liquid CO_2 cooling, the highest transverse tensile strength and elongation of the joint reached 92% and 82% of those of the basal metal(BM), respectively, due to the weak tempering softening. A maximum impact energy of up to 93% of that of the BM was obtained in the NZ under liquid CO_2 cooling, which was attributed to the operation of the dual phase of lath martensite and fi ne ferrite.  相似文献   

20.
INDUSTRY NEWS     
《中国铸造》2014,(3):215-217
China Securities News reported on March 21, 2014: Guangdong Hongtu Wuhan Die Casting Co., Ltd. (Wuhan Hongtu), a wholly owned subsidiary of Guangdong Hongtu Technology (Holdings) Co., Ltd., held a groundbreaking ceremony recently. With the registered capital of 50 million Yuan, Wuhan Hongtu has a total land area of 100,000 square meters and a plant construction area of 72,000 square meters. It is expected to have a production capacity of about 30,000 tonnes of aluminum castings annually after it is put into production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号