首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial oxidation behavior of Cr4Mo4V high-speed steel (HSS) joints undergoing hot-compression bonding was investigated by using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In the heating and holding processes, dispersed rod-like and granular $\delta - {\text{Al}}_{{2}} {\text{O}}_{{3}}$ oxides were formed at the interface and in the matrix near the interface due to the selective oxidation and internal oxidation of Al, while irregular Si–Al–O compounds and spheroidal SiO2 particles were formed at the interface. After the post-holding treatment, SiO2 oxides and Si–Al–O compounds were dissolved into the matrix, and $\delta - {\text{Al}}_{{2}} {\text{O}}_{{3}}$ oxides were transformed into nanoscale $\alpha - {\text{Al}}_{{2}} {\text{O}}_{{3}}$ particles, which did not deteriorate the mechanical properties of the joints. The formation and migration of newly-formed grain boundaries by plastic deformation and post-holding treatment were the main mechanism for interface healing. The tensile test results showed that the strength of the healed joints was comparable to that of the base material, and the in-situ tensile observations proved that the fracture was initiated at the grain boundary of the matrix rather than at the interface. The clarification of interfacial oxides and microstructure is essential for the application of hot-compression bonding of HSSs.  相似文献   

2.
The electrochemical hydrogen charging of pure titanium and its alloys has been investigated previously, while how a subsequent annealing treatment affects the type of hydride and its orientation relationship with matrix is not clear. In the present study, a quantitative study on the microstructure and orientation of titanium hydrides during electrochemical hydrogen charging and subsequent annealing treatment was carried out using scanning electron microscopy, transmission electron microscopy and electron backscatter diffraction. The results show that δ-hydride is the main in both the electrochemically hydrogenated sample and the subsequent annealing treated sample. After electrochemical hydrogen charging for 48 h, the surface is mainly composed of dense δ-hydride with a thickness of approximately 42 μm, the orientation relationship between α-matrix and δ-hydride follows only the orientation relationship of OR2, {0001}α//{1$\overline{1}$1}δ, $\langle 1\overline{2}10\rangle_{\alpha }$//$\langle 110\rangle_{\delta }$ and an interface plane $\{ 10\overline{1}3\}_{\alpha }$//$\{ 1\overline{1}0\}_{\delta }$. Besides OR2, a part of hydrides show an orientation relationship of OR1 with the matrix after annealing, {0001}α//{001}δ, $\langle 1\overline{2}10\rangle_{\alpha }$//$\langle 110\rangle_{\delta }$ and an interface plane of $\{ 10\overline{1}0\}_{\alpha }$//$\{ 1\overline{1}0\}_{\delta }$. It is further found that the relative frequency of OR1and OR2 is closely related to annealing duration. Under an argon atmosphere at 450 °C, the frequencies of OR1 and OR2 are nearly balance with an annealing time of 12 h, while OR1 becomes to be the predominant one with a relative frequency of 96.5% after annealing for 96 h. The mechanism for the evolution of orientation relationship of hydrides with annealing time was discussed.  相似文献   

3.
It has been recently pointed out that the compositions of industrial alloys are originated from cluster-plus-glueatom structure units in solid solutions. Specifically for Ni-based superalloys, after properly grouping the alloying elements into Al, Ni-like(■), r-forming Cr-like(■) and c-forming Cr-like(■), the optimal formula for single-crystal superalloys is established [Al–Ni_(12)](Al_1■~_(0:5) ■_(1:5)). The Co substitutions for Ni at the shell sites are conducted on the basis of the first-generation single-crystal superalloy AM3, formulated as [Al–■_(12)Co_x](Al_1Ti_(0.25)Ta_(0.25)Cr_1W_(0.25)Mo_(0.25)), with x = 1.5, 1.75, 2 and 2.5(the corresponding weight percents of Co are 9.43, 11.0, 12.57 and 15.71, respectively). The900 ℃ long-term aging follows the Lifshitz–Slyozov–Wagner theory(LSW theory), and the Co content does not have noticeable influence on the coarsening rate of c0. The microstructure and creep behavior of the four(001) single-crystal alloys are investigated. The creep rupture lifetime is reduced as Co increases. The alloy with the lowest Co(9.43 Co) shows the longest lifetime of about 350 h at 1050 ℃/120 MPa, and all the samples show N-type rafting after creep tests.  相似文献   

4.
Studies of the oxidation kinetics of copper have been conducted in the thin-film range at temperatures of 383–398 K and in the oxygen pressure range of 0.278–21.27 kPa; whereas in the thick-film regime at 1123 K, studies have been conducted in the oxygen pressure range of 2.53–21.27 kPa. Furthermore, the effect of continuously impressed direct current with oxygen pressure variation in Wagner's parabolic range has been studied also in order to have a better understanding of the effective charge on the migrating species. In the low-temperature range, the rate constant, kP \(P_{O_2 }^{1/4} \) , suggesting that the migration of neutral vacancies in the growing film predominates. At high temperature, 1123 K, in the Wagnerian regime, the observed approximate pressure dependencies of the parabolic rate constants are the following: $$\begin{gathered} {\text{k}}_{\text{p}} (normal oxidation) \propto \sim {\text{P}}_{{\text{O}}_{\text{2}} }^{{\text{1/7}}} \hfill \\ {\text{k}}_{\text{p}} (sample cathodic) \propto \sim {\text{P}}_{{\text{O}}_{\text{2}} }^{{\text{1/5}}} \hfill \\ \end{gathered} $$ and $${\text{k}}_{\text{p}} (sample anodic) \propto \sim {\text{P}}_{{\text{O}}_{\text{2}} }^{{\text{1/10}}} $$ .  相似文献   

5.
A thermally induced hexagonal close-packed (HCP) to face-centered cubic (FCC) phase transition was investigated in an α-type Ti35 alloy with twinned structure by in situ heating transmission electron microscopy (TEM) and ab initio calculations. TEM observations indicated that the HCP to FCC phase transition occurred both within matrix/twin and at the twin boundaries in the thinner region of the TEM film, and the FCC-Ti precipitated as plates within the matrix/twin, while as equiaxed cells at twin boundaries. The crystallographic orientation relationship between HCP-Ti and FCC-Ti can be described as: $\left\{ {111} \right\}_{{{\text{FCC}}}} //\left\{ {0002} \right\}_{{{\text{HCP}}}} \;{\text{and}}\; < 110 >\,_{{{\text{FCC}}}} //\, <1\overline{2} 10>\,_{{{\text{HCP}}}}$. The HCP to FCC phase transition was accomplished by forming an intermediate state with a BB stacking sequence through the slip of partial dislocations. The formation of such FCC-Ti may be related to the thermal stress and temperature. Ab initio calculations showed that the formation of FCC-Ti may also be related to the contamination of interstitial atoms such as oxygen.  相似文献   

6.
The strong texture of Mg alloys can lead to strong tension–compression yield asymmetry and corrosion anisotropy, and this will consequently affect the effectiveness of hard tissue implants. A biomedical Mg–6Zn–0.5Zr alloy containing a large number of {10$\overline{1}$2} primary twins and {10$\overline{1}$2}–{10$\overline{1}$2} secondary twins is successfully prepared by cross compression. The dual twin structure not only removes the tension–compression yield asymmetry completely, but effectively reduces the corrosion anisotropy without compromise of corrosion resistance. The difference between the largest corrosion rate and smallest one is ~ 1.2 times compared to ~ 1.6 times of the original materials. It is found that the reduced corrosion anisotropy is related to re-distribution of crystallographic orientations by twins.  相似文献   

7.
In this study, we investigated the effects of single-stage ageing (SSA), two-stage ageing (TSA), 2% pre-strain + single-stage ageing (P2%SSA) and 2% pre-strain + two-stage ageing (P2%TSA) on the mechanical properties of as-extruded Mg–8Gd–3Y–0.5Ag–0.5Zr alloy (E alloy). Compared with the SSA treatment, the TSA treatment increased the number density of $\beta ^{\prime}$ phase. The P2%SSA and P2%TSA treatments generated the $\gamma ^{\prime}$ phase and chain-like precipitates in addition to the $\beta ^{\prime}$ phase. The contributions of these ageing treatments to the alloy strengthening can be ranked as P2%TSA > P2%SSA > TSA > SSA, because the increments in the tensile yield strength were estimated to be 199 MPa > 148 MPa > 144 MPa > 110 MPa. Different from the traditional strengthening of $\beta ^{\prime}$ phase in the E + SSA and E + TSA alloys, the composite precipitates comprising the $\beta ^{\prime}$ phase, $\gamma ^{\prime}$ phase and chain-like precipitates in the E + P2%SSA and E + P2%TSA alloys provided better combined strengthening effect. The $\beta ^{\prime}$ phase was still dominated in the strengthening effect of the composite precipitates. Owing to the higher number density of $\beta ^{\prime}$ phase in the composite precipitates, the E + P2%TSA alloy exhibited the better mechanical performance as compared with the E + P2%SSA alloy. Finally, the E + P2%TSA alloy had the ultimate tensile strength of 452 MPa, the tensile yield strength of 401 MPa and elongation to failure of 3.3%.  相似文献   

8.
目的 探索黄芪总甙(AST) 的抗炎作用及其作用机制。方法 采用大鼠角叉菜胶气囊炎症模型, 测定渗出液量、中性白细胞游出数、蛋白质、PGE2、IL-8、NO、PLA2含量以及$\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$的生成量。结果 AST40、80 mg·kg-1 可使角叉菜胶诱导大鼠气囊炎症的渗出液量、中性白细胞游出数、蛋白质含量显著减少, 降低渗出液及中性白细胞中PLA2活性,减少渗出液中IL-8 含量及中性白细胞$\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$的生成。AST 也可明显减少渗出液中PGE2、NO 的含量。结论 AST 的抗炎作用机理与其降低血管通透性和抑制白细胞游出、降低PLA2活性、减少IL-8、PGE2、NO 等炎症介质的产生与抑制氧自由基生成有关。  相似文献   

9.
The detailed structures and the corresponding formation mechanisms of the well-known Al_(10)RE_2Mn_7 phase in the conventional die-cast Mg–4Al–4RE–0.3Mn alloy were thoroughly investigated using transmission electron microscopy(TEM). The results indicate that the Al_(10)RE_2Mn_7 phase ordinarily contains both normal (111) twins and orientation twins.Both detailed TEM observations and density functional theory calculations indicate that the Al_(10)RE_2Mn_7 phase is transferred from the Al_8REMn_4 phase following an orientation relationship as [010]_(Al_8REMn_4)//[101]_(Al_(10)RE_2Mn_7) and (101)_(Al_8REMn_4)//(110)_(Al_(10)RE_2Mn_7). Moreover, forming orientation twins in the Al_(10)RE_2Mn_7 phase is attributed to the blurry regions at incoherent twin boundaries in the Al_8REMn_4 phase. Finally, these formed orientation twins result in the (111) twins in the Al_(10)RE_2Mn_7 phase.  相似文献   

10.
By measuring the amount of absorbed oxygen and analyzing the solution by means of photocolorimetry, the effect the cathodic hydrogenation exerts on iron corrosion in an aerated solution of 0.05 N H2SO4 + 1 N Na2SO4 at 20°C is studied. On control samples, the currents of iron dissolution (i Fe) and oxygen reduction coincide with the limiting diffusion current of the latter . In the initial corrosion period of hydrogenated iron, the inequalities are valid, which can be explained by the interaction of active hydrogen forms with oxygen at the surface of corroding iron.  相似文献   

11.
Sulfidation of an Fe-23.4Cr-18.6Al (at.%) alloy was investigated in H2S-H2 atmospheres, Pa, at 973 K. It was found over this pressure range that sulfidation after an early transient period followed the parabolic rate law, being diffusion controlled. An investigation was carried out of the scales formed during early transient sulfidation over the sulfur pressure range Pa. Fully developed scales were multilayered consisting of an inner compact layer of equiaxed grains, an intermediate layer of equiaxed and columnar grains exhibiting a small degree of porosity, and an outer porous layer of distinct plates and needles. The grains of the inner and intermediate layers contained quarternary sulfide phases. The following phases were identified: spinels (CrFe)Al2S4 and (FeAl)Cr2S4, hexagonal (FeCr)Al2S4, (CrAlFe)2S3, and (CrAlFe)5S6. The plates and needles were composed of hexagonal (FeCr)Al2S4 and (CrAlFe)2S3 at and 10–5 Pa from which pyrrhotite, FeS, grew at .  相似文献   

12.
13.
The oxidation characteristics of the Co-rich amorphous magnetic alloy, were investigated. A TEM study of the microstructure revealed a complex oxidation behavior of the alloy depending on composition, especially the boron and silicon concentrations. It was determined that the critical concentration of the metalloid to be 21 at.% above, which a continuous layer of an amorphous borosilicate phase formed on the surface. Phase separation of the surface oxide was also observed when the composition is rich in boron. The metalloid (boron and silicon) concentration was critical in determining the surface-oxide morphology, which in turn, affected the subsurface microstructure. As the magnetization behavior of the Co-rich amorphous alloy depends upon the surface oxide and the internal-oxide precipitates, the guidelines are provided by which one can engineer the microstructure of the alloy to optimize the magnetic properties.  相似文献   

14.
The sulfidation behavior of an Fe-26.4Cr-8Al-6Mn (at.%) alloy in H2S-H2 atmospheres, \(10^{ - 4} \leqslant {\text{P}}_{{\text{S}}_{\text{2}} } \leqslant 10^2 {\text{Pa}}\) .  相似文献   

15.
Hot deformation behavior of 0.3 C-15 Cr-1 Mo-0.5 N high nitrogen martensitic stainless steel(HNMSS) was investigated in the temperature range of 1173-1473 K and at strain rates of 0.001-10 s~(-1) using a Gleeble 3500 thermal-mechanical simulator.The true stress-strain curves of the studied HNMSS were measured and corrected to eliminate the effect of friction on the flow stress.The relationship between the flow stress and Zener-Hollomon parameter for the studied HNMSS wsa analyzed in the Arrhenius hyperbolic sine constitutive model by the law of Z=3.76×10~(15) sinh(0.004979σ_p)~(7.5022).The processing maps at different strains of the studied HNMSS were plotted,and its flow instability regions in hot working were also confirmed in combination with the microstructure examination.Moreover,the optimal hot deformation parameters of the studied HNMSS could be suggested at T=1303-1423 K and ε=5-10 s~(-1) or T=1273-1473 K and ε=0.005-0.04 s~(-1).  相似文献   

16.
The effects of Ni content and ball milling time on the hydrogen storage thermodynamics and kinetics performances of asmilled La_5Mg_(95-x)Ni_x(x = 5, 10, 15) ternary alloys have been investigated.The evolution of microstructure and phase of experimental alloys in the absorption/desorption process has been characterized by XRD, SEM and HRTEM.The hydrogen storage kinetics and thermodynamics performances and PCI curves have been tested using the Sievert apparatus.It is found that the rising of Ni content remarkably improves the hydrogen storage kinetic performance, but reduces hydrogen storage capacity.And with the increase in milling time, hydrogen desorption activation( E_a) value decreases firstly and then increases; the minimum value is 47.6 kJ/mol, and the corresponding milling time is 10 h for La_5Mg_(85)Ni_(10) alloy.As for the thermodynamics properties, the hydrogenation enthalpy(Δ H) and hydrogenation entropy(Δ S) both decrease firstly and then increase with the rising of Ni content and milling time.The composite La_5Mg_(85)Ni_(10)alloy milled for 10 h exhibits the best thermodynamics and kinetics performances, the lowest E_a of 47.6 kJ/mol, absorption of 5.4 wt.% within 5 min and desorption of 5.2 wt.% within 3 min at 360 ℃ and the lowest Δ H and Δ S of 72.1 kJ/mol and 123.2 J/mol/K.  相似文献   

17.
The studies were performed on D3 tool steel hardened after austenitizing at 1050 °C during 30 min and tempering at 200-700 °C. Based on the diffraction studies performed from the extraction replicas, using electron microscopy, it was found that after 120-min tempering in the consecutive temperatures, the following types of carbides occur: $$ 200\;^\circ {\text{C}} \to \upvarepsilon + \upchi + {\text{ Fe}}_{ 3} {\text{C}},\quad 3 50\;^\circ {\text{C}} \to \upvarepsilon + \upchi + {\text{ Fe}}_{ 3} {\text{C,}} $$ $$ 500\;^\circ {\text{C}} \to \upchi + {\text{ M}}_{ 3} {\text{C }} + {\text{ M}}_{ 7} {\text{C}}_{ 3} ,\quad 600\;^\circ {\text{C}} \to \upchi + {\text{ M}}_{ 3} {\text{C }} + {\text{ M}}_{ 7} {\text{C}}_{ 3} , $$ $$ 700\;^\circ {\text{C}} \to {\text{M}}_{ 3} {\text{C }} + {\text{ M}}_{ 7} {\text{C}}_{ 3} . $$ Apart from higher mentioned carbides, there are also big primary carbides and fine secondary M7C3 carbides occurring, which did not dissolve during austenitizing.  相似文献   

18.
Hot compression tests of Mg–11 Gd–4 Y–2 Zn–0.4 Zr alloy(GWZK114) were conducted at a deformation temperature range of 300–500 °C and a strain rate range of 0.01–10.0 s-1. Based on systematic microstructure observation, it is confirmed that long period stacking ordered(LPSO) phase displays essential and evolving roles on the dynamic recrystallization(DRX)behavior. The results indicate that the plastic deformation is mainly coordinated by simultaneous exist of LPSO kinking of lamella 14 H-LPSO phase and DRX at 350–450 °C, and DRX at 500 °C. Further, it is found that the LPSO kinking induced during 350–450 °C can delay the DRX. A phenomenological DRX model of GWZK114 alloy is established to be XDRX = 1. exp[-0.5((ε-ε_c)/ε~*)~(0.91)]. Non-uniform distribution of plastic strain during compression was considered via finite element method and it ensures a good prediction of DRX fraction under a large plastic strain. Meanwhile, an enhanced DRX model, taking its formulation as XDRX = {1. exp[-0.5((ε-ε_c)/ε~*)~(0.91)]}( T/(226.8)-1)n, n = 3.82ε~(0.083), is proposed for the first time to capture the hindering effect of 14 H-LPSO kinking on DRX behavior. The predicted results of this enhanced DRX model agree well with the experimental cases, where 14 H-LPSO kinking is dominated or partially involved(300–450 °C). Besides,a size model of DRX grains is also established and can depict the evolution of DRX grain size for all the investigated compression conditions with accounting for temperature rising at high strain rates(5 s-1 and 10 s-1).  相似文献   

19.
Phase equilibria in the quasi-ternary system Ag2Se-CdSe-Ga2Se3 were investigated by differential thermal and x-ray phase analysis methods. Phase diagrams of nine vertical sections were constructed. The boundaries of seven single-phase fields were determined which are solid solution ranges of system components and intermediate phases. We constructed the isothermal section at 820 K and the liquidus surface projection, and have determined the position in the system of six invariant processes with the participation of liquid: $ {\text{L}}_{{{\text{U}}_{1} }} + {\upzeta} {\leftrightarrows} {\upbeta} + {\upeta} $ L U 1 + ζ ? β + η (1145 K), $ {\text{L}}_{{{\text{U}}_{ 2} }} + \upzeta \leftrightarrows \upgamma + \upeta $ L U 2 + ζ ? γ + η (1138 K), $ \text{L}_{{U_{3} }} + \upeta \leftrightarrows \updelta + \upgamma $ L U 3 + η ? δ + γ (1113 K), $ {\text{L}}_{{{\text{E}}_{ 1} }} \leftrightarrows \upbeta + \updelta + \upeta $ L E 1 ? β + δ + η (1083 K), $ {\text{L}}_{{{\text{E}}_{ 2} }} \leftrightarrows \upalpha + \upbeta + \upvarepsilon $ L E 2 ? α + β + ε (969 K), $ {\text{L}}_{{{\text{E}}_{ 3} }} \leftrightarrows \upbeta + {\updelta} + \upvarepsilon $ L E 3 ? β + δ + ε (963 K). Two invariant processes in the sub-solidus part, $ \upbeta + \updelta \leftrightarrows \upeta + \uplambda $ β + δ ? η + λ and $ \upbeta + \updelta \leftrightarrows \upvarepsilon + \uplambda $ β + δ ? ε + λ at 968 and 938 K, respectively, were investigated as well.  相似文献   

20.
Interdiffusion in BCC phase of Ti-Al-Ni ternary system was investigated at 1473 K (1200 °C) by employing the diffusion-couple technique. The raw composition profiles resulting from interdiffusion treatment and retrieved from EMPA were first analytically represented by error function expansion (ERFEX), and the ternary interdiffusion and impurity diffusion coefficients were then extracted by the Whittle-Green and generalized Hall methods, respectively. The obtained main interdiffusion coefficients \( \tilde{D}_{\text{AlAl}}^{\text{Ti}} \) and two cross coefficients, i.e. \( \tilde{D}_{\text{AlNi}}^{\text{Ti}} \) and \( \tilde{D}_{\text{NiAl}}^{\text{Ti}} \), were found to increase with increasing composition of diffusing species, whereas the values of \( \tilde{D}_{\text{NiNi}}^{\text{Ti}} \) show no noticeable compositional dependence. The impurity diffusivities \( \tilde{D}_{{{\text{Al}}\left( {\text{Ti - Ni}} \right)}}^{*} \) and \( \tilde{D}_{{{\text{Ni}}\left( {\text{Ti - Al}} \right)}}^{*} \) increase with decreasing the Ni and Al compositions, respectively. The results imply that Al diffusion in β Ti-Al-Ni alloys would occur via an ordinary vacancy diffusion mechanism, whereas Ni diffusion, at least one order magnitude faster than Al, very likely benefits from interstitial diffusion as Fe and Co anomaly diffuse in BCC Titanium alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号