首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 796 毫秒
1.
通过CCT曲线和实验室控轧控冷工艺试验,研究了440 MPa级船体钢的过冷奥氏体连续冷却(CCT)过程的相变以及组织性能。结果表明:试验钢在较宽的冷速范围内容易得到贝氏体组织,随着终轧温度的降低,试验钢的强韧性得到提高。轧后空冷条件下,试验钢得到铁素体+珠光体组织,韧性较好,但强度富余量相对较小。轧后加速冷却,试验钢的强度得到明显提升。模拟卷取温度为550 ℃时,试验钢的强韧性相对更好。综合分析,较优的控轧控冷工艺参数为:终轧温度840 ℃,轧后冷速(20±5) ℃/s,卷取温度550~560 ℃。  相似文献   

2.
针对当前我国高强建筑用钢的开发,采用Ti-Nb微合金化技术设计试验钢化学成分,通过热膨胀试验确定了试验钢的动态CCT曲线,基于此设计了实验室热轧试验方案,研究了工艺参数对试验钢组织、性能的影响。结果表明:当水冷终冷温度大于610 ℃时,试验钢的显微组织为铁素体+珠光体;当水冷终冷温度小于390 ℃时,试验钢显微组织为少量铁素体+贝氏体;当终轧温度为810 ℃、水冷终冷温度为350 ℃时,试验钢显微组织为少量铁素体+贝氏体,屈服强度为837 MPa,这是细晶强化、相变强化、析出强化共同作用的结果,为800 MPa高强钢筋的研究开发提供了数据支撑和理论指导。  相似文献   

3.
仿晶界型铁素体/贝氏体低碳锰钢的组织和力学性能   总被引:1,自引:0,他引:1  
李龙  丁桦  杜林秀  宋红梅  郑芳 《金属学报》2006,42(11):1227-1232
对一种低碳锰钢进行了终轧温度高于Ar3卷取温度的不同控轧控冷处理.扫描电镜和透射电镜观察表明,终轧变形在奥氏体再结晶区进行时,有利于获得均匀分布的铁素体和一定含量的贝氏体组织.终轧温度降低到800℃,实验钢产生了形变诱导铁素体相变.当冷速增加到60℃/s且卷取温度为400℃左右时,铁素体主要沿原奥氏体晶界分布,晶粒得到细化,贝氏体体积分数增加,强度有较大的提高,但延伸率较低,屈强比较高.通过控制终轧温度为800-850℃、冷速为40℃/s左右以及卷取温度为550℃左右时,低碳锰钢可以获得仿晶界型铁素体/贝氏体的复相组织,其中铁素体晶粒尺寸为8-8.5μm,贝氏体体积分数在30%左右,综合性能较好.  相似文献   

4.
试验研究了超高强度复相钢CP800的相变动力学、热轧工艺和析出行为。结果表明,CP800钢的贝氏体区与铁素体区分离,贝氏体和铁素体区宽广,珠光体区较窄;在400~600℃之间发生贝氏体转变,贝氏体相变的临界转变速率约25℃/s。在不同终轧温度和卷取温度下,CP800钢的屈服强度均高于680 MPa,抗拉强度均高于760 MPa。随着卷取温度的提高,屈服、抗拉强度上升,断后伸长率提高,扩孔率降低。终轧温度由920℃降低至880℃时,强度变化不显著,但断后伸长率显著上升,扩孔率显著下降。随着热处理温度的升高,Ti C的析出导致试验钢的屈服强度和抗拉强度逐步提高,而当热处理温度提高至两相区后,冷却过程中的铁素体相变导致强度急剧降低。  相似文献   

5.
TRIP钢采用控轧控冷工艺处理后,得到铁素体、贝氏体和残留奥氏体的显微组织。结果显示,试验钢在700℃,中间空冷时间为12 s,其规定塑性延伸强度、抗拉强度、伸长率及强塑积分别达571 MPa,797 MPa,36%,28 692 MPa·%的最高值。800℃终轧温度,中间空冷时间为9 s,其力学性能最差; 750℃终轧温度,中间空冷时间为16 s,其力学性能适中。终轧温度越低,应变诱导铁素体相变越显著,铁素体晶粒愈加细化。中间空冷时间越充分,铁素体充分形成,TRIP效应越显著。终轧温度相对较高,中间空冷时间不足,铁素体没有充分时间形成TRIP效应相对较差。  相似文献   

6.
文章研究了在采用低温区大变形和轧后连续冷却工艺时,终轧温度对传统Si-Mn系热轧双相钢组织和性能的影响。结果表明,在试验工艺条件下,试验钢的最终组织均为铁素体+马氏体的双相组织。随着终轧温度(770℃~850℃)的升高,试验钢的屈服强度由415MPa急剧降低到335MPa,而抗拉强度变化不大,约为690MPa;随着终轧温度的升高,铁素体晶粒尺寸逐渐均匀,平均晶粒尺寸先增大,后减小,铁素体含量约为88%;试验钢的n值和延伸率,则随着终轧温度的升高而升高,在温度850℃时,n值达到0.23,延伸率达到28.7%。  相似文献   

7.
为实现高品质Ti微合金化高强钢的工业化生产,通过热模拟试验研究了加热温度、终轧温度、精轧阶段变形量、冷却速率和卷取温度对Ti微合金化高强钢组织性能的影响规律。结果表明,随着加热温度的升高,铁素体晶粒尺寸显著增大,试验钢硬度增大。随着终轧温度的降低和冷却速率的增大,铁素体晶粒尺寸逐渐减小,贝氏体含量增加,试验钢硬度增大。随着精轧阶段变形量的增大,铁素体含量增加,组织得到细化,细晶强化和相变强化共同作用的结果使得试验钢硬度逐渐降低。随着卷取温度的降低,试验钢的硬度先升高后降低,当卷取温度为610 ℃时,试验钢硬度最高。  相似文献   

8.
利用Gleeble-1500热模拟试验机进行了控轧控冷热模拟试验,分析了非调质CT80连续油管用钢的精轧变形温度、冷却速度和卷取温度对试验钢组织与性能的影响规律。基于控轧控冷热模拟试验结果,设定了试验钢实验室轧制工艺,在终轧温度830℃、冷却速度46℃/s和卷取温度450℃轧制工艺条件下,获得了具有针状铁素体+贝氏体+少量M/A岛组织构成的成品钢板,其屈服强度620 MPa,抗拉强度754 MPa,伸长率29.2%,屈强比0.82,各项性能均满足CT80连续油管用钢力学性能要求。  相似文献   

9.
对一种Mo-Ti微合金钢进行了热轧实验,研究了不同工艺条件下的组织特征、析出行为及低温冲击性能。结果表明,随着终轧温度及终冷温度的降低,实验钢的屈服强度和抗拉强度均有所升高;当终轧温度较高时,细小的析出物主要在冷却及模拟卷取过程中产生,当终轧温度较低时,细小的析出物主要由应变诱导析出及冷却、模拟卷取过程的析出物组成;实验钢的组织以铁素体为主,随着终轧温度及终冷温度的降低,晶粒尺寸明显细化,同时,组织中渗碳体及钛的碳化物等岛状物的尺寸也变小,大角度晶界比例增加,低温冲击裂纹由脆性断裂变为韧性断裂;当终轧温度为800~810℃,终冷温度分别为615℃和500℃时,实验钢的屈服强度分别为738 MPa及768 MPa,抗拉强度分别为857 MPa和872 MPa,伸长率为18%~19%,其韧脆转变温度低于-70℃,实验钢具有良好的强度及韧性指标。  相似文献   

10.
利用光学显微镜、扫描电镜等分析方法,研究了控轧控冷工艺参数对X80管线钢组织和力学性能的影响。结果表明:终轧温度750℃时,试验钢的显微组织为多边形铁素体和粒状贝氏体,终轧温度为810℃时,显微组织为针状铁素体;在高冷速条件下,试验钢中M/A岛的尺寸、数量和体积分数均较大;具有双相组织试验钢的屈强比低,塑韧性好;M/A岛含量高、尺寸大的试验钢,其强度和屈强比高,塑韧性差。  相似文献   

11.
基于合金减量化原则,通过热轧+超快冷技术得到了强韧性较好的600 MPa级热轧双相钢,研究了控冷工艺对其组织与性能的影响。结果表明,随着弛豫时间的减少和卷取温度的降低,钢中铁素体体积分数逐渐减少,铁素体晶粒尺寸逐渐减小,抗拉强度由602 MPa 增加至637 MPa,伸长率由31.0%减小至24.0%,屈强比为0.53~0.59,n值为0.17~0.21。综合考虑板形风险和力学性能,试验钢合适的卷取温度为150 ℃,合适的弛豫时间为7 s。  相似文献   

12.
为了提高管线用钢的安全服役性能,使其获得良好的强韧性和较低的屈强比,采用现场小批量试制试验,研究了不同控轧控冷工艺对L450M管线钢组织性能的影响。结果表明:L450M管线钢采用粗轧开轧温度1 010~1 050℃,精轧开轧温度920~960℃,精轧终轧温度790~830℃,终冷温度550~580℃,屈服强度可达到475~513 MPa,抗拉强度565~583 MPa,伸长率32%~38%,屈强比0.82~0.88,-20℃横向冲击功188~285 J,满足API SPEC 5L-2018标准要求;适当提高精轧终轧温度、降低粗轧阶段变形量、减少精轧阶段轧制道次,有利于降低L450M管线钢的屈强比;适当降低冷速、提高终冷温度,使L450M管线钢显微组织中先共析铁素体比例增加,有利于降低屈强比。  相似文献   

13.
淬火温度对550MPa级厚钢板显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730—910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

14.
为了提高高强厚钢板低温韧性,对550 MPa级厚钢板进行了730-910℃淬火和600℃回火的热处理,研究不同淬火温度对其组织及力学性能的影响.实验结果表明:在亚温区淬火后回火,随淬火温度升高,试样强度和韧性均表现为先降低后升高,淬火温度升高到完全奥氏体区,试样强度进一步升高,但韧性降低.760℃亚温淬火后回火,试样组织为粗大的多边形铁素体,大量呈长条状、针状M/A组元断续分布在铁素体基体和晶界上,严重恶化韧性,力学性能最差.相比完全奥氏体化淬火后回火,850℃亚温淬火后回火,试样具有最佳强韧配合,这是由于组织细化,铁素体的出现增加了大角晶界比例,以及存在大量均匀位错胞状亚结构和稳定薄膜状残余奥氏体引起的.  相似文献   

15.
陈华辉  梁锐 《金属热处理》2019,44(1):138-142
对一种试验性的高强建筑用钢进行了控制轧制和控制冷却处理,研究了终冷温度对试验钢力学性能和显微组织的影响,并对拉伸断口形貌进行了观察。结果表明,试验钢在终冷温度为450℃时具有较高的强塑性和低屈强比,能够满足780 MPa级高层低屈强比建筑用钢的要求;在终冷温度为650℃时,试验钢中的M-A岛状组织更加粗大、含量相对较高,形状主要以多边形和和条带状形态为主,而终冷温度为450℃时,试验钢中M-A岛状组织的数量相对较多,尺寸相对细小,且主要以颗粒状形态存在;贝氏体铁素体基体上弥散分布着颗粒状M-A岛的复相组织有利于提高试验钢的强塑性并降低屈强比;终冷温度为450℃时试验钢的抗拉强度、规定塑性延伸强度、断后伸长率和屈强比分别为1070 MPa、825 MPa、16. 6%和0. 771。   相似文献   

16.
借助DIL805A/D淬火变形膨胀仪,通过金相、透射电镜、室温拉伸、-40 ℃冲击测试等分析手段,研究了热处理工艺对960 MPa级高强钢组织与性能的影响。结果表明:在790~880 ℃温度范围内,试验钢随着淬火加热温度的提高,马氏体量逐渐增加,铁素体量逐渐减少,在850 ℃淬火,铁素体含量基本为零,组织最为均匀细小。随着回火温度从180 ℃提高到450 ℃,马氏体的板条逐渐分解,板条状的渗碳体开始聚集和球化。淬火加热温度高于850 ℃时,材料的屈服强度大于960 MPa;在450 ℃回火,材料具有更佳的冲击韧性。对本试验钢而言,采用850 ℃淬火+450 ℃回火,具有最佳的强韧性匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号