首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
莫来石短纤维增强ZL109铝基复合材料的时效行为   总被引:8,自引:2,他引:6  
通过测试硬度的方法,对莫来石纤维增强ZL109复合材料的时效析出行为进行了研究。结果表明,由于莫来石短纤维的加入,使复合材料峰值时效硬度明显高于基体。  相似文献   

2.
采用液态模锻法制备出单一碳纤维增强ZL109复合材料,并研究碳纤维含量对复合材料常温拉伸性能的影响。结果表明,碳纤维的加入对ZL109的常温抗拉强度是不利的,这主要与纤维与基体的界面、纤维取向等有关;但随着碳纤维体积百分数的增加复合材料的强度略有提高,这说明碳纤维在一定程度上起到了承载作用。  相似文献   

3.
利用正交试验和极差分析法优化了SiCp增强铝基复合材料热处理工艺,结果表明当固溶温度为500℃、固溶时间为2 h、时效温度为175℃、时效时间为12 h,经热处理后的复合材料的硬度最佳,其中时效温度起主要作用,其次是固溶温度.  相似文献   

4.
保温时间对铝基复合材料抗拉强度的影响   总被引:2,自引:0,他引:2  
研究了莫来石硅酸铝(3Al2O3·2SiO2)短纤维增强ZL109复合材料在室温300℃,350℃和400℃时的抗拉强度以及在高温下保温时间对抗拉强度的影响。研究表明,该复合材料比ZL109合金有更高的高温强度,随着在高温下保温时间的延长,复合材料的抗拉强度下降。  相似文献   

5.
在原位合成工艺制备TiB2颗粒增强ZL109复合材料基础上,通过加入SiC颗粒增强铝基复合材料,制备了TiB2+SiC混杂颗粒增强ZLl09复合材料。结果表明:TiB2颗粒在铝合金熔体中具有良好的悬浮稳定性,而且在TiB2+SiC混杂颗粒增强铝基复合材料中,由于TiB2颗粒的存在,有效抑制了SiC颗粒的沉降行为,熔体经45min静置仍可获得颗粒分布均匀的复合材料,这使得制备高模量复杂形状零件的直接铸造成型成为可能;在TiB,+SiC混杂颗粒增强铝基复合材料中,颗粒的混杂作用对复合材料弹性模量的提高具有协同作用,能够大幅度提高复合材料的弹性模量,其弹性模量较计算值提高14.7%;对于(10%TiB2+10%SiC)/ZL109混杂增强铝基复合材料,经T6热处理后,材料抗拉强度可达到275MPa,弹性模量提高到105.8GPa。  相似文献   

6.
原位合成TiB2/ZL109复合材料的热处理特性   总被引:5,自引:0,他引:5  
利用TiB2颗粒在共晶Al-Si基体中易于分散和生成颗粒超细的原理,用混合盐法制备了原位TiB2颗粒增强ZL109为基体的复合材料.颗粒加入后材料的硬度明显提高,如对颗粒质量分数为8.3%的复合材料材料T6处理后,其布氏硬度较基体ZL109提高了41.7%.对不同颗粒质量分数的复合材料固溶时效行为的研究表明,颗粒的加入,抑制了材料的固溶扩散进程,加速了复合材料的时效进程.用有效扩散理论分析了颗粒增强复合材料的固溶时效特性.  相似文献   

7.
挤压铸造SiC/ZL109铝合金双连续相复合材料的凝固组织   总被引:4,自引:0,他引:4  
研究了挤压铸造工艺参数和SiC泡沫增强体对ZL109铝合金基体凝固组织的影响,探讨了复合材料的凝固过程.结果表明,采用先浇注基体熔体、后放置骨架的复合工艺制备的复合材料组织比先放置骨架、后浇注熔体的复合材料均匀;SiC泡沫增强体降低了复合压力对基体组织的影响,使得提高复合压力虽然可以细化基体的组织,但效果不明显.SiC泡沫增强体对基体的晶粒尺寸没有明显的影响,但是改变了晶粒的形态.泡沫孔内的α—Al初晶表现为粗大的柱状晶,其方向垂直于泡沫增强体的筋.泡沫孔的尺寸越小,越容易形成枝晶组织,枝晶的方向性越强.SiC/ZL109铝合金双连续相复合材料基体凝固时,α—Al首先在泡沫筋的附近形核,然后逐渐向泡沫孔的中心长大.α—Al枝晶形成轮廓以后,中心富硅区发生共晶反应,筋表面的共晶硅最后形成.  相似文献   

8.
Mullite/ZL101复合材料的组织及时效特性   总被引:2,自引:0,他引:2  
用挤压铸造制备Mullite/ZL101复合材料。用光学显微镜及透射电镜(TEM)观察复合材料及其基体合金的微观组织,用硬度测试及差示扫描量热仪研究Mullite/ZL101复合材料及其基体合金的时效特性。结果表明:采用挤压铸造法可获得复合良好的Mullite/ZL101复合材料,Mullite纤维对ZL101合金有明显的强化作用;在整个时效过程中,复合材料的时效硬度明显高于基体合金,纤维的引入没有改变基体合金时效析出序列,对低温下由空位扩散控制的SSS-GP反应无明显的抑制作用;复合材料中β″析出反应的峰值温度及活化能较基体合金的低,时效硬化过程得到一定程度的加速。  相似文献   

9.
10.
摩擦磨损试验结果表明,硅酸铝短纤维/ZL109复合材料在干、油摩擦条件下,其耐磨性都大大高于基体合金,摩擦系数明显低于基体合金,特别是在干摩擦条件下,耐磨性提高幅度、摩擦系数降低幅度更大。适当的时效能改善复合材料的耐磨性,当处于峰时效时,复合材料的摩擦系数往往较小  相似文献   

11.
采用金属熔融铸造法,用熔体快淬Cu-P中间合金对ZL109活塞合金进行了变质处理,随后对变质后的合金试样进行了金相组织观察和性能检测,并对晶粒细化的机理进行了研究。结果表明:与加入传统Cu-P变质剂相比,在ZL109合金中加入熔体快淬Cu-P变质剂,使组织中的初晶硅和共晶硅得到了更好的细化,增加了界面能,减少了铸造缺陷,使其综合性能得到了进一步的提高。因此,熔体快淬处理是提高Cu-P变质剂变质效果的一种有效方法。  相似文献   

12.
试验研究了含Ni与不含Ni活塞的高温强度,结果表明,在250℃以下,不含Ni与含Ni活塞的高温强度基本相同。据此,ZL109活塞不加Ni是可行的。  相似文献   

13.
利用挤压铸造法制备了Al2O3f/ZL109短纤维筒形复合材料,在转速675 r/min、载荷100N条件下,对复合材料的纤维平行取向和纤维垂直取向磨损表面各进行了4组样品的试验,根据试验结果绘出纤维取向及体积分数对复合材料磨损性能影响的曲线图.结果表明,该复合材料纤维垂直取向比纤维平行取向耐磨,即纤维垂直取向有利于复合材料耐磨性能的提高.  相似文献   

14.
为了研究纳米晶Al-Ti-B细化剂对活塞用ZL109合金耐磨性的影响,本文首先对Al-Ti-B中间合金进行了熔体快淬处理,得到了薄丝带状的Al-Ti-B中间合金,通过TEM分析可知,其为纳米晶组织;然后采用金属熔融铸造法,用纳米晶Al-Ti-B中间合金对ZL109合金进行了细化处理;最后进行了磨损试验.研究表明,纳米晶Al-Ti-B中间合金使ZL109的组织得到了很好的细化,硬度、耐磨性均明显提高.硬度(HBS)由125提高到132,提高了5.6%,磨损率由2.012% 降为0.389 4%,从而明显提高了抗磨损性能.由此得出,用快速凝固的方法对Al-Ti-B晶粒细化剂进行预处理,可以有效地提高ZL109合金的抗磨损性能.  相似文献   

15.
1 INTRODUCTIONInSiCw/ 60 61composites,thedifferenceofthethermalexpansioncoefficientbetweenreinforcement(SiCw)andmatrix(Alalloy)isverylarge.Asacon sequence,whenthecompositesiscoolingdownfromthemanufacturingtemperaturetoroomtemperature ,alargemismatchtensilestr…  相似文献   

16.
利用真空负压成形法成功地制备了氧化铝短纤维预制件,较好地解决了筒形预制件中纤维的分散和预制件成形的难题,并利用挤压铸造法制作了氧化铝短纤维增强ZL10 9复合材料。  相似文献   

17.
通过光学显微镜、扫描电子显微镜和X-射线衍射对AlCuFe准晶中间合金增强的ZL109合金的显微组织和相结构进行分析,并对其力学性能进行测定。实验结果表明:AlCuFe准晶中间合金可以细化ZL109合金的显微组织。使合金中的针状共晶硅颗粒化,初晶硅尖角钝化。在ZL109合金的显微组织中除了共晶硅、初晶硅和α-Al外,还出现了Al62.5Cu25Fe12.5二十面体准晶相。合金的铸态和热处理态力学性能均得到提高,尤其韧性提高更为显著。由此说明,利用AlCuFe准晶中间合金增强ZL109合金是一种强化铝合金的行之有效的新途径。  相似文献   

18.
对TiB_2/ZL101复合材料和ZL101基体合金进行激光焊对比研究,结果表明:TiB_2/ZL101复合材料对激光的吸收率大于ZL101基体合金,相同工艺参数焊接时复合材料的焊接深度大于基体合金。由于基体合金导热率较大,使得焊缝上部比复合材料焊缝较宽。在功率一定时,较快的焊接速度(3 m/min)使得基体合金焊缝组织为α相和分布在α相间的针列状共晶体复合组织;而在较慢的焊接速度(2 m/min)时,基体合金焊缝组织为α相和分布较均匀的块状或长针状共晶Si相。复合材料在较快的焊接速度(3 m/min)时,晶界壁较薄,仅有少量共晶Si存在,在较慢的焊接速度(2 m/min)时,晶界壁明显变厚,共晶Si相较多。通过测试两种不同焊接速度的ZL101合金焊缝硬度表明,焊缝硬度值均比母材高,但共晶Si以针状或块状存在的焊缝硬度值小于针列状形式存在的焊缝硬度值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号