首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究了固溶时效处理对8030铝合金导线组织性能的影响。结果表明,未经热处理的8030铝合金导线由α-Al、Al6Fe、Al13Cu4Fe3、AlMg2Zn相组成。经过480 ℃固溶处理6 h后,AlMg2Zn相完全溶入基体,Al13Cu4Fe3相及Al6Fe相部分溶入基体。再经240 ℃时效处理6 h后,第二相重新析出。经固溶时效处理后,8030铝合金导线的导电率都有所提高,在480 ℃固溶处理6 h,再经240 ℃时效处理6 h后,其导电率最高达56.67%IACS,比未经热处理的合金导电率提高了3.41%。经固溶时效处理后,8030铝合金导线的伸长率显著提高,在480 ℃固溶处理6 h,再经200 ℃时效处理4 h后,伸长率从未经热处理的3.75%提高到31.25%。  相似文献   

2.
研究了不同等温退火工艺对8030铝合金导线组织及性能的影响。结果表明:等温退火前后合金均由α-Al基体和Al6Fe相组成。在同一等温温度下,随着等温时间的延长组织逐渐趋于均匀化;同一等温时间下,随着等温温度的升高,组织趋于均匀化的时间缩短。经过等温退火处理后铝合金导线的导电率均有所提高,在470 ℃均匀化退火24 h后再经240 ℃等温4 h,合金导电率达到最高值57.21%IACS,比未经热处理试样的导电率提高了2.4%IACS。经过等温退火处理后铝合金导线的硬度及抗拉强度均有所降低,塑性大幅度提高。在470 ℃均匀化退火24 h后再经260 ℃等温8 h,合金的伸长率最高可达23.64%。热处理前后合金均为塑性断裂。  相似文献   

3.
时效对列车接触网导线用Cu-Ag-Zr合金性能的影响   总被引:1,自引:0,他引:1  
研究了时效参数对Cu-0.1Ag-0.051Zr合金性能的影响。结果表明:合金经870℃×1h固溶后,在560℃时效可获得较高的导电率;而在480℃时效可获得较高的显微硬度;时效前加以冷变形可以加速时效初期第二相的析出,使合金的导电性显著增加,合金经50%变形后480℃时效0.25h时,导电率可达90.2%IACS,而固溶后直接时效为83.2%IACS;经适当加工工艺成形的合金导线的综合性能优于Cu-0.1Ag合金导线。  相似文献   

4.
运用拉伸试验、扫描电镜(SEM)和XRD等测试方法,研究了加工工艺对Cu-9.8Ni-2.2Sn合金组织和性能的影响。结果表明:铁模铸造的铸坯成分偏析严重,经650℃保温10 h均匀化处理后组织更为均匀。试验范围内最优加工工艺为热轧加热温度850℃,经950℃固溶后冷变形70%的该合金在480℃时效2 h性能较好。精轧后该铜镍锡合金强度达732 MPa、伸长率23%、导电率11.7%IACS。  相似文献   

5.
采用显微组织观察、力学性能测试、热保持性能测试、导电性能测试等方法,研究了Zr含量对Al-0.1Er合金导线显微组织和性能的影响。结果表明:Al-0.1Er合金中Zr添加量较少时(≤0.15wt%),Zr以固溶原子形式存在。随着Zr含量的增加,试样的强度和热保持性能逐渐升高,伸长率和导电率逐渐降低。当Zr含量达到0.2wt%时,Al_3Zr相析出,晶粒细化,试样强度继续增强,热保持性能下降,伸长率和导电率回升。经过210℃×4 h时效处理后,Al-0.1Er-0.05Zr合金导线导电率达到了60.13%IACS,耐热性能在280℃条件下,强度保存率在90%以上,达到超耐热铝合金导线导电性能和耐热性能要求。  相似文献   

6.
以(Fe81Ga19)99B1合金为对象,研究了不同热处理条件下合金析出相形貌和大小分布特征及其对力学性能和磁致伸缩性能的影响。结果表明,在1000℃下保温5 min~4 h的条件范围内,合金中细小富Ga析出相的平均尺寸随保温时间的延长由铸态的约1.2μm增加到约3.6μm;保温时间从4 h延长至12 h,析出相平均尺寸基本保持不变;与铸态试样相比,1000℃保温4 h后淬火态试样的维氏硬度下降了28.0%,变形抗力下降了11.9%(工程应变0.18时),表明析出相的粗化使合金呈现出软化特征;1000℃保温5 min后淬火试样的磁致伸缩系数比铸态试样提高51.2%,1000℃保温时间≥4 h淬火试样的磁致伸缩系数比1000℃保温5 min试样进一步提高了30.0%以上,即淬火保温时间延长导致析出相的粗化有利于合金磁致伸缩性能的提高。  相似文献   

7.
在真空中频感应炉中采用石墨坩埚熔炼+气体保护浇注+金属型凝固工艺制备了Cu-0.73Cr合金铸锭,分别测试了铸态和经980℃×1 h固溶和450℃不同保温时间时效处理后铸锭的导电率、硬度,并对铸态下力学性能、显微组织进行了观察和比较.结果表明,该工艺制备的合金铸态时导电率为47.8%IACS,硬度为63.6 HB;经固溶时效处理后,导电率达到87.7%IACS,硬度达到102.3 HB;铸态下的抗拉强度为241.517 MPa,伸长率为41.00%;铸态合金中存在a-Cu和Cr相,其中部分Cr溶于基体中,部分Cr以第2相形式存在.在试验条件下,该工艺同普通大气熔铸法相比,制备的合金铸锭综合性能优良.  相似文献   

8.
Cu-Ni-Al-Si合金固溶-时效处理   总被引:1,自引:0,他引:1  
用扫描电镜、硬度计、涡流导电率测试仪和万能试验机测试分析了固溶-时效工艺对Cu-Ni-Al-Si合金组织和性能的影响,探讨了合金的强化机理.结果表明,该合金具有显著的时效强化特性,经960 ℃×1.5 h固溶 480 ℃×3 h时效工艺处理后,抗拉强度为860.3 MPa,屈服强度为743.7 MPa,伸长率为17.6%,合金的硬度达272 HB,导电率为18.9%IACS.  相似文献   

9.
采用稀土微合金化和热处理相结合的方法制备出了高强高导电率的铝合金导线,研究了均匀化退火温度和时间、时效温度和时间对合金显微组织、力学性能和导电性能的影响,优化了均匀化退火和时效热处理工艺。结果表明:相对于铸态合金,均匀化退火态合金的硬度降低而导电率提高;随着均匀化退火温度的升高和均匀化退火时间的延长,合金的显微硬度逐渐降低而导电率不断提高,适宜的均匀化退火工艺为570℃/8 h;随着时效温度的提高,导电率达到标准所需的时间缩短,而抗拉强度达到标准的时间先增加而后减小;稀土铝合金导线适宜的时效热处理工艺为190℃/9 h,此时铝合金导线的抗拉强度为242 MPa、导电率为60.2%IACS。  相似文献   

10.
针对GH4169合金进行了不同变形工艺的超塑性拉伸和热处理试验,研究变形及热处理对合金塑性的影响。结果表明,锻态合金分别经过890℃×10h+950℃×1h和890℃×10h+950℃×3h的退火热处理后,发现延长第二次退火时间可有效细化晶粒;利用最大应变速率敏感指数法(最大m值法)进行不同温度的超塑性拉伸试验,在950℃时合金的伸长率最佳;延长第二次退火时间可显著提高试样的伸长率;采用基于最大m值法的应变诱发超塑性法对合金进行超塑性拉伸试验,可知预变形拉伸后,保温20min后其伸长率最佳;在890℃×10h+950℃×3h热处理后合金伸长率达566%,较单纯m值法拉伸后合金的伸长率显著提高。  相似文献   

11.
热处理对锌合金组织和力学性能的影响   总被引:1,自引:0,他引:1  
对锌合金的挤压态样品进行不同工艺的热处理,并对其性能和组织进行分析.结果表明,使该锌合金获得强度、硬度提高的较佳热处理工艺是:加热温度250℃,保温时间30min.热处理后该合金的抗拉强度408 MPa.伸长率3.3%;使合金的强度和硬度得到提高的原因是ε相的大量析出,析出相对合金产生的硬化高于再结晶对合金的软化;热处理后材料的组织更加细小,表现出的韧性比挤压态好.  相似文献   

12.
通过力学性能测试、扫描电镜等试验,研究锌合金经过热处理后的组织和性能。结果表明:热处理后锌合金晶粒细化,由等轴状的η(Zn)相、共晶组织以及第二相组成;200~350℃热处理3 h随炉冷却使共晶组织由片层状转变为颗粒状;较好的热处理工艺是350℃保温3 h,随炉冷却,锌合金的抗拉强度达到190 MPa,伸长率达到10%。  相似文献   

13.
热处理工艺对16Mn钢组织与抗震性能的影响   总被引:1,自引:1,他引:0  
为提高钢材的多次反复弯曲性能,对不同热处理工艺后的16Mn钢进行了试验研究。结果表明,在连续冷却过程中,随着试样冷却速度加快,伸长率降低,硬度及抗拉强度升高,反复弯曲性能好,其中经900℃×2 h、风冷工艺处理后的试样综合性能最好。在等温过程中随着试样等温温度升高,硬度和抗拉强度降低,伸长率升高;等温试样比连续冷却的试样硬度高,抗拉强度高。  相似文献   

14.
研究了固溶-冷变形-时效处理对高强导电弹性Cu-Zn-Ni-Al合金力学性能、导电率和显微组织的影响.结果表明,经固溶与冷变形处理后进行时效热处理,合金的抗拉强度、屈服强度和电导率都大幅度提高.825℃×1h固溶+80%冷轧变形+450℃×1h时效处理是Cu-Zn-Ni-Al合金综合性能较好的热处理工艺,其抗拉强度、屈服强度和伸长率分别为1065、1017MPa和2.0%;最佳导电率可达38.1%IACS.合金的微观组织为固溶体和弥散相颗粒(主要是γ'相),析出强化是合金强化的主要原因.  相似文献   

15.
借助金相显微镜、TEM、SEM/EDS、XRD及电导仪研究了热处理对铜基多元合金导电性能的影响。结果表明:热处理能提高该合金的导电性能,当该合金经960℃×1h及480℃×4h时效后可获得较高的导电性能;并对其导电性能变化的原因进行探讨。  相似文献   

16.
对Ti-38644钛合金ϕ68 mm棒材进行了不同温度、保温时间和冷却方式的热处理试验,研究了不同热处理制度对合金棒材显微组织和力学性能的影响。结果表明,随着固溶温度的升高,析出α相含量增大,强度明显下降,塑性提高;随着时效温度的升高,析出α相粗化,强度降低,伸长率随之升高,强化效果降低;随着时效保温时间的延长,析出α相进一步增加,强度呈先增加后降低的趋势,塑性变化与之相反;固溶冷却方式对合金组织性能的影响也很明显,随着冷却速率的加快,获得的β晶粒比较细小,时效后的强度随之明显增高,同时伸长率下降也很明显。为了获得良好的强塑性匹配,最佳的固溶时效热处理工艺为810 ℃×1 h(油冷)+510 ℃×8 h(空冷)。  相似文献   

17.
分析了固溶、形变和时效对Cu-0.65Cr-0.35Zr合金性能的影响.结果表明,经固溶处理后施加冷变形,再进行时效处理可获得较高的导电率和硬度.合金经1000℃保温lh水淬,60%的冷变形,500℃时效4~6h,导电率大于75%IACS,硬度大于147 HB;经1000℃保温1h水淬,60%的冷变形,500℃时效2h,导电率72%IACS,硬度163HB,抗拉强度532MPa,断裂伸长率9.2%,当变形量为80%时,其抗拉强度可达585MPa,断裂伸长率16.3%.经该工艺处理后,合金可具有500℃的抗高温软化能力.  相似文献   

18.
在模拟工业化生产条件下研究C70250合金的热轧、固溶及时效处理工艺,对比C70250合金板坯的热轧、热轧+时效、热轧+冷轧+时效后合金的力学性能与导电性能,同时研究空冷与水冷对材料力学性能的影响.结果表明:时效析出为C70250合金的主要强化手段,时效前的塑性加工能使合金强度提高4%~5%.XRD分析表明:C70250合金铸锭经热轧开坯,在575~725 ℃之间保温1 h,析出相以Ni_2Si为主;合金开轧与终轧温度应控制在(900±50)~725 ℃之间,热轧板冷却速度不小于2.5 ℃/s;固溶处理制度为(900±50) ℃、1~3 h;时效工艺为400~ 450 ℃、4~6 h,该工艺制备的C70250合金抗拉强度不小于644 MPa,电导率IACS为40%,伸长率为8%.  相似文献   

19.
在1 000 ℃和1 020 ℃对铸造合金保温3 h后空冷,研究不同热处理温度对铸造Ti-23Al-17Nb(摩尔分数,%)合金组织和拉伸性能的影响.结果表明:铸造合金为等轴晶,晶界和晶粒内均析出呈网篮状魏氏组织的α2板条;经热处理后,晶粒内细小的α2板条充分析出,晶界处连续的α2相断开;随着处理温度的提高,析出的α2板条数量随之减少,板条宽度随之增加;热处理能提高合金的抗拉强度和伸长率,经1 020 ℃,3 h,AC热处理后试样的伸长率达到4%,其拉伸断口主要是由沿晶断裂和准解理断裂组成.  相似文献   

20.
采用导电率测试仪、万能拉伸试验机、光学显微镜等分别测试了Al-Fe-Cu-0.25La-Zr合金的导电率、抗拉强度、伸长率等性能指标及显微组织,研究了电线电缆Al-Fe-Cu-0.25La-Zr合金在不同退火工艺下的导电性能与力学性能。结果表明,合金在350 ℃×2 h退火时达到导电率峰值62.8%IACS,抗拉强度为101.5 MPa,伸长率为32.4%;在300 ℃退火2 h时导电率达到62.1%IACS,抗拉强度为125.0 MPa,伸长率为13.4%。合金在300 ℃×(4~10) h退火期间,合金的导电率维持相对稳定,且高于350 ℃×(4~10) h,说明合金在300 ℃时具有更好的耐热稳定性。Al-Fe-Cu-0.25La-Zr合金最优的退火工艺为300 ℃×2 h,此工艺处理后的合金线材符合对电线电缆电学性能与力学性能的标准要求,且可以降低生产成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号