首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
目的研究SiO_2含量对钛合金表面激光熔覆梯度生物陶瓷涂层生物活性的影响。方法利用激光熔覆技术,采用梯度成分设计思想,固定涂层中稀土氧化物La_2O_3的添加量,在钛合金TC4表面制备了掺杂不同含量SiO_2的梯度生物陶瓷涂层。采用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、噻唑蓝(MTT)及荧光素双醋酸酯(FDA)染色等测试手段,研究了SiO_2含量对激光熔覆制备梯度涂层的组织结构和生物活性的影响。结果 SiO_2在激光熔覆过程中可以降低梯度生物陶瓷涂层的开裂敏感性,并起到细化晶粒的作用。当SiO_2掺杂量为2.5%时,激光熔覆过程中诱导合成的HA+CaTiO_3数量最大;当SiO_2掺杂量为7.5%时,模拟体液(SBF)实验表明,涂层的矿化沉积能力最强。MTT测试表明,SiO_2掺杂量为7.5%的涂层细胞增殖数量的OD值最大,细胞能够紧贴涂层表面生长。FDA染色分析表明,SiO_2掺杂量为7.5%的涂层上细胞数量最多,且分布均匀。结论 SiO_2掺杂量深刻影响着生物活性陶瓷相HA和Ca_2SiO_4数量,进而影响生物陶瓷涂层的生物活性。SiO_2掺杂量为7.5%的涂层具有最佳的生物相容性及生物活性。  相似文献   

2.
稀土含量对Ca-P陶瓷涂层组织及细胞相容性的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
利用激光熔覆技术在医用钛合金表面制备一层梯度Ca-P陶瓷涂层,并研究了La_2O_3含量对其微观组织结构及细胞相容性的影响。通过OM,XRD,SEM,MTT法及倒置荧光显微镜对Ca-P陶瓷涂层的结合界面、物相、表面形貌,细胞活性及细胞生长形态进行分析。结果表明:Ca-P陶瓷涂层主要含有CaTiO_3、HA、TiO_2、β-TCP等物相。当Ca-P陶瓷涂层中La_2O_3质量分数为0.6%时,在2θ为32~33°附近其XRD图谱中羟基磷灰石(HA)的特征峰较高,表明其生成的生物活性相最多。并且其在模拟体液(SBF)浸泡14天后的表面上生成的HA最多,分布最广。细胞试验表明当La_2O_3质量分数为0.4%~0.6%时,梯度生物陶瓷涂层具有较佳的细胞相容性,有利于细胞的稳定增殖与生长。  相似文献   

3.
新加坡的南阳技术大学新近开发成功一种人体植入物用的生物复合活性涂层 ,该涂层由羟基磷灰石 /Ti 6Al 4V和羟基磷灰石 /氧化钇稳定化的氧化锆所组成。在Ti 6Al 4V合金上喷涂单纯的羟基磷灰石涂层 ,其承重容量往往很低。为了改进这种生物涂层的力学性能 ,南阳技术大学研究了羟基磷灰石 (HA)与Ti 6Al 4V或与氧化钇稳定化氧化锆 (YSZ)的复合涂层的显微组织、力学性能、生物活性以及生体相容性。研究结果表明 ,HA/Ti 6Al 4V生物陶瓷复合材料是一种轻质、生物相容性和稳定性好的材料。HA/YSZ涂层具有较高的强度…  相似文献   

4.
采用电弧离子镀的方法制备了不同数目(1、2、4、6)双层结构的AlCrN/AlCrVN多层涂层,并研究了多层结构对涂层微观结构、力学、摩擦学和切削性能的影响。结果显示,沉积态AlCrN/AlCrVN多层涂层主要由固溶(Al,Cr)N组成,优先生长方向为[111]晶向。与其他多层涂层相比,具有6层双层结构的AlCrN/AlCrVN涂层在高温下表现出较低的摩擦系数(约0.46)和磨损率(0.15×10-11 m3/N·m),以及较高的硬度(HK0.05=38 000 MPa)和膜-基结合强度(LC2=53±1 N)。多层涂层相邻层之间形成了较多的界面,有助于提高多层涂层的硬度和耐磨性。切削试验结果显示,当切削磨损标准VB=0.2时,AlCrN/AlCrVN-6涂层具有较高的硬度和耐磨性,最长的切削长度为7.4 m。  相似文献   

5.
通过多弧离子镀(MAIP)在室温下将具有不同调制比(1:2、1:3、1:5)的多层Cr/CrN厚涂层沉积在A100钢基底上。腔室温度在沉积过程中由室温逐渐升高到160~170 ℃。设计调制结构是为了使膜/基结合强度和机械性能最大化。调制比为1:2的Cr/CrN多层涂层表现出最高的膜/基结合强度(Lc=63.8 N),这可能归因于最高的材料硬度(H)/弹性模量(E)和H3/E2数值比(分别为0.083和0.138)。Cr层越厚,多层Cr/CrN厚涂层的塑性和摩擦学性能越好。干摩擦试验表明,与单层CrN相比,Cr/CrN多层涂层的平均摩擦系数和比磨损率分别最高降低了24%和94%。随着Cr层变厚,磨损机理从表面疲劳磨损转变为磨料磨损,这种现象可归因于硬度和塑性的协调变化。  相似文献   

6.
目的 研究Mo含量的变化对激光熔覆CoCrFeNiW0.6高熵合金涂层的影响。方法 使用RFL-C1000光纤激光器,在45钢基体表面制备CoCrFeNiW0.6Mox(x=0,0.2,0.4,0.6,0.8)高熵合金涂层,并利用Leica DVM6光学显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、能谱仪、显微硬度仪、电化学工作站对熔覆层的宏观形貌与稀释率、相结构、微观组织结构、硬度、耐腐蚀性能进行测试与分析。结果 加入Mo元素后,结合状态与表面形貌良好,当x=0~0.4时,涂层微观组织主要呈树枝晶形态,且晶粒逐渐变细。当x≥0.6时,涂层表面开始有裂纹产生。随着Mo元素的添加,涂层逐渐析出σ相,晶粒尺寸逐渐减小。当x=0.8时,有共晶组织形成。涂层显微硬度随Mo元素的增加而增加,但由于x=0.8时出现较多裂纹,裂纹的出现影响了涂层硬度,导致x=0.8时的硬度减小。当x=0.6时,涂层平均显微硬度最高,达到了959.69HV0.3,约为CoCrFeNiW0.6涂层平均硬度的20.32%。当x=0~0.6时,涂层耐腐蚀性能随着Mo元素含量的增加逐渐提升。当x=0.8时,耐腐蚀性能变差,其原因是裂纹的出现以及σ相的形成使得涂层耐腐蚀性变差。在x=0.6时,涂层耐腐蚀性能最好。结论 Mo元素的加入使得涂层微观组织出现σ相,同时有细化晶粒的作用,可以显著改善涂层的硬度以及耐腐蚀性。  相似文献   

7.
为了改善活性生物稀土梯度涂层的质量,在碱液环境中采用电极化处理法(PAS)对宽带激光熔覆生物活性稀土梯度涂层进行后处理。利用XRD和电化学分析仪对涂层的相组成和耐腐蚀性进行了研究,通过模拟体液浸泡试验考察了生物陶瓷涂层的生物活性和涂层表面的电荷分布情况。结果表明,碱液环境中电极化处理法(PAS)能够提高涂层的结晶度,使涂层中的非晶相、杂相向羟基磷灰石转化。PAS对涂层的耐腐蚀性影响不大。与未处理涂层相比,PAS处理后的涂层生物活性更好,且涂层表面产生了更多的负电荷。  相似文献   

8.
激光重熔Al2O3-TiO2涂层的强韧性能   总被引:3,自引:0,他引:3       下载免费PDF全文
采用等离子喷涂和激光重熔复合工艺在Ti-6Al-4V基体上制备了Al2O3-TiO2涂层,通过X射线衍射(XRD)、扫描电镜(SEM)、显微硬度试验和压痕试验等方法研究了激光重熔对涂层的组织及强韧性能的影响.结果表明,等离子喷涂Al2O3-TiO2涂层中的主相为γ-Al2O3,而相应重熔涂层中的主相为α-Al2O3.激光重熔可消除喷涂态涂层内部的孔隙、微裂纹和层状堆垛等微观缺陷,获得致密化的组织,并使涂层与基体形成良好冶金结合.重熔涂层的硬度比相应喷涂态涂层约提高了50%,裂纹扩展抗力相比喷涂态涂层提高了近两倍.激光重熔纳米涂层中的未熔增强颗粒和纳米结构特性等对涂层起到了协同强化和韧化作用.  相似文献   

9.
医用镁合金激光熔覆羟基磷灰石涂层初探   总被引:2,自引:0,他引:2  
为改善医用镁合金表面耐蚀性和生物相容性,采用激光熔覆技术在AZ91D镁合金表面制备具有生物活性的羟基磷灰石涂层.结果表明,所制备的涂层和镁合金基体达到了良好的冶金结合,涂层显微结构为致密的胞状晶,主要由Mg、HA、CaH2P2O7和CaH4(PO3)2·H2O组成,其中Ca和P的摩尔比为1.73, 接近理论值1.67,从而大大提高了涂层的生物活性.另外,控制Mg对涂层的稀释对涂层制备起关键作用.  相似文献   

10.
溶胶凝胶法制备TiO_2/HA复合生物活性涂层及其体外活性   总被引:1,自引:0,他引:1  
通过溶胶凝胶法在纯钛基体上制备了羟基磷灰石(HA)/TiO2复合生物活性涂层。HA和TiO2溶胶由前驱体制得,按不同摩尔比直接混合两种溶胶来制备混合溶胶。HA可以提高钛基的生物活性,TiO2可以提高涂层与基体的物理、化学相容性和结合强度。粘结拉伸结果表明,复合涂层与基体结合良好,比纯HA涂层与基体的结合强度提高约47%。复合涂层试样于SBF中浸泡4、7和14d的SEM分析结果表明,复合涂层表面的类骨磷灰石生成量较高。成骨细胞实验结果表明,复合涂层上细胞铺展良好。  相似文献   

11.
利用激光熔覆技术在医用钛金属表面制备生物活性陶瓷羟基磷灰石(HAP)涂层,是近年来世界各国生物医用植入材料及相关领域的研究热点之一。首先简要概括了HAP生物陶瓷涂层材料的特点与意义,介绍了医用钛金属材料与生物陶瓷材料的历史发展与特点,指出了已有技术制备的生物陶瓷涂层在制备与应用中存在的优缺点,介绍了激光熔覆制备生物陶瓷涂层的特点与优点。综述了国内外钛及钛合金表面激光熔覆制备HAP生物陶瓷涂层、激光快速成形生物陶瓷涂层及相关材料的研究特点、现状与进展。重点介绍了激光熔覆不同成分原材料、添加稀土成分与不同波长激光制备生物陶瓷涂层的机理,及激光熔覆制备生物陶瓷涂层的特点与优缺点。激光熔覆制备生物陶瓷涂层及相关材料是一个多学科交叉的研究领域,通过对钛合金的激光表面改性,激光熔覆制备生物陶瓷涂层在理论研究与临床应用上具有广阔的前景。最后对激光熔覆工艺制备合成HAP生物陶瓷涂层未来的研究方向进行了讨论与展望。  相似文献   

12.
《Surface & coatings technology》2007,201(21):8715-8722
In this study, TiO2-based coatings containing Ca and P ions were prepared on titanium alloy surfaces by microarc oxidation (MAO). After soaking in aqueous NaOH solution and subsequent heat treatment at 700 and 800 °C, calcium titanate/titania bioceramic composite (CTBC) coatings were obtained. The results show that the outer layers (0–1.5 μm) of the CTBC coatings are mainly composed of Ca, Ti, O and Na constituents with a uniform distributions with increasing the depth near the surfaces. The surface phase compositions of the CTBC coating formed at 700 °C are anatase, rutile and CaTi21O38 phases, as well as a few CaTiO3, while those of the CTBC coating formed at 800 °C are anatase, rutile and CaTiO3. When incubated in a simulated body fluid (SBF), apatite was deposited on the CTBC coatings probably via formation of hydroxyl functionalized surface complexes on the CTBC coating surfaces by ionic exchanges between (Ca2+, Na+) ions of the CTBC coatings and H3O+ ions in the SBF. The CTBC coating formed at 800 °C seems to facilitate the deposition of Ca and P probably due to the good crystallographic match between perovskite CaTiO3 and HA on specific crystal planes.  相似文献   

13.
In order to obtain bioactivity on the surface of titanium alloy, the bioceramic coating on Ti–6Al–4V was designed and fabricated by laser cladding. The microstructure and bioactivity of laser-cladded bioceramic coating were investigated in vitro via soaking in a simulated body fluid (SBF). The results indicated that the laser-cladded bioceramic coating was metallurgically bonded to the substrate and contained such bioactive phases as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). A bone-like apatite layer was spontaneously formed on the surface of laser-cladded coating merely soaked in SBF for 7 days. And the appearance of flake-like and cotton-like morphology, which is the characteristic morphology of apatite, offered an advantageous condition for osseo-connection. The formation ability of apatite was remarkably accelerated on the surface of laser-cladded bioceramic coating compared with the untreated titanium alloy substrate.  相似文献   

14.
采用激光熔覆技术在Ti-6Al-4V基材表面制备了生物陶瓷复合涂层。利用急性毒性实验、动物体内埋植实验以及体外细胞培养实验对钛基生物陶瓷复合涂层的生物性能进行了研究。结果表明:添加0.6%(质量分数)Y_2O_3的预置粉末和激光熔覆后的生物陶瓷涂层均无明显的急性毒性反应;动物体内分别埋植45、180 d后,与未添加稀土氧化物的复合涂层相比较,添加0.6%Y_2O_3的激光熔覆生物陶瓷复合涂层具有更好的骨小梁生成能力,且细胞在其表面生长良好;添加0.6%Y_2O_3的激光熔覆生物陶瓷复合涂层具备良好的生物相容性。  相似文献   

15.
Carbonated hydroxyapatite (CHA) coatings were deposited onto 316L stainless steel substrates using an in-house developed warm spraying system. Microstructures of the coatings were comprehensively investigated. Microhardness, tensile strength and wear resistance of the CHA coatings were examined. In addition, bioactivities of the coatings were studied after immersing in simulated body fluid (SBF). Results show that the as-sprayed coatings exhibited typical lamellar architectures consisting of partially melted and flattened splats, i.e., with molten shells and un-molten cores of original powders. The CHA coatings had nearly identical Ca/P ratios, crystalline structures and phase constitutions to those of the feedstock powders, indicating that undesired decompositions caused by overheating can be avoided by employing the warm spraying process. Microhardness and tensile strength of as-sprayed coatings were around 690 and 11.4-20.6 MPa, respectively. Moreover, the warm-sprayed CHA coating exhibited a high resistance against abrasion wear when sliding took place with polymers. After being immersed in Hank’s SBF for 28 and 60 days, new apatite was formed on the coating surface corroborating the good biocompatibility of the coating.  相似文献   

16.
激光熔覆生物陶瓷涂层的组织结构   总被引:4,自引:1,他引:3  
借助XRD及SEM对TC4钛合金表面激光熔覆陶瓷涂层的组织结构进行了研究。结果表明,该涂层为含HA等钙磷基复合相结构,其组织具有择优取向,有序分布的胞状微晶特征,晶内局部区域有细小粒状物析出,晶界存在第二相,涂层与基体界面为化学冶金结合。该涂层提高了与自然生物硬组织组织结构特性的相似程度。  相似文献   

17.
采用微弧氧化法及微弧氧化-水热法对纯钛进行改性,制备了TiO_2与TiO_2-HA生物陶瓷膜层,通过溶血率实验、动态凝血时间实验和血小板黏附实验等方面评价其血液相容性。结果表明:各试样的溶血率都远小于5%,均符合医用材料的溶血率要求,不会产生溶血作用。与钛基TiO_2生物陶瓷膜层和钛基材相比,钛基TiO_2-HA生物陶瓷膜层的溶血率更低,动态凝血时间曲线变化更为缓慢,黏附的血小板更少,且变形程度更轻,具有更好的抑制血小板的聚集与变形的性能,血液相容性更优。  相似文献   

18.
Biomedical implants are generally coated with a thin layer of hydroxyapatite (HA) using a plasma spraying or pulsed laser deposition method. However, the bonding strength between the coating layer and the substrate is relatively low. Moreover, the high temperature of the deposition process causes a structural instability of the HA, and therefore degrades its bioactivity and reduces the service life of the coating layer following implantation. Accordingly, the present study replaces HA with fluorapatite (FA) as the coating material, and examines the effects of two different binders, namely polyvinyl alcohol (PVA) and water glass (WG), on the properties of FA coatings deposited on Ti-6Al-4V substrates using an Nd-YAG laser cladding process. Scanning electron microscopy (SEM) observations reveal that the FA coating has a coral- and dendrite-like structure when mixed with the PVA binder, but a pure dendrite-like structure when mixed with the WG binder. In addition, the Ca/P value of the WG-based FA coating is significantly higher than that of the PVA-based coating. Fluorapatite, Al2O3, CaTiO3 and Ca3(PO4)2 phases are observed in both coating layers. However, the XRD analysis results indicate that the microstructure of the WG sample is dominated by Ca3(PO4)2 phase while that of the PVA sample is dominated by FA. After soaking in SBF, it was observed that the specimen produced with PVA binder or less laser output power possessed a better apatite induction ability.  相似文献   

19.
通过碱热处理工艺对碳/碳复合材料表面阴极声电沉积的磷酸钙生物陶瓷涂层进行处理,使其转变为磷灰石涂层,采用SEM,EDAX,FTIR,XRD等研究了涂层组成、结构和形貌的变化,并采用拉伸测试评价了涂层与基体的结合力,用SEM观察了涂层的断口形貌.结果表明:用声电沉积技术获得的片状透钙磷石涂层经碱热处理后而得到磷灰石涂层,涂层与基体形成了化学键合,且结合紧密,涂层的形貌没有显著变化,但涂层的致密度有所增加;拉伸测试表明涂层与基体的结合强度最大可达4.2 MPa 以上,涂层的失效部位主要在涂层内部,其失效方式为涂层的内聚破坏和界面脱粘.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号