首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用分子动力学模拟了不同温度下0.1%He (原子分数)浓度下含与不含位错α-Fe中He原子偏聚行为和拉伸变形行为。结果表明,当温度为300 K时,预置的位错影响较弱,含与不含位错α-Fe模型中He原子均容易发生自吞噬形成He团簇,He团簇分布弥散且尺寸较小,位错环数目较少;当温度为600 K时,He原子热扩散行为加剧,较多的He原子偏聚到位错,He团簇分布离散且尺寸较大,位错环数目增加。在拉伸变形过程中,位错的存在能够加速He团簇演变成He泡,降低了模型的屈服应力和应变。在低温300 K时,弥散分布的小He团簇容易合并,发生脆性断裂,整个变形过程位错密度较低;在高温600 K时,离散分布的大He泡展现出较好的延展性,发生塑性断裂,整个变形过程中位错大量增殖,塑性较好。  相似文献   

2.
利用分子动力学模拟方法分别研究了空位、自间隙杂质原子、杂质He原子等缺陷对金属Ti样品的力学性能的影响.对完整晶格的金属Ti在不同拉伸应变速率下的应力-应变曲线进行计算,发现拉伸过程可分为弹性形变、塑性形变及断裂3个阶段.分别研究了含有不同浓度的空位、自间隙杂质原子、杂质He原子缺陷的金属Ti样品在2×109s-1拉伸应变速率下的应力-应变曲线,并对不同情况下的Young's模量进行了统计.还分别对含有自间隙杂质原子和杂质He原子的金属Ti的拉伸断裂过程进行了观察与分析.  相似文献   

3.
采用金属催化的气相合成法制备高纯度单晶钨纳米线材料,采用分子动力学方法进行拉伸模拟计算,分析〈100〉、〈110〉、〈111〉3种典型晶向下单晶钨纳米线的拉伸应力-应变曲线及其微观变形结构,揭示晶向对单晶钨纳米线拉伸破坏机理的影响。结果表明:3种晶向均具有弹性、损伤、屈服、破坏等4个阶段,其中〈100〉晶向还具有独特的屈服后强化阶段和两次应力突降阶段。晶向对单晶钨纳米线弹性模量的影响较小,对抗拉强度、屈服强度和延展性的影响较大,主要取决于不同的原子表面能和主滑移面。计算得到的单晶钨纳米线的弹性模量值与实测结果吻合较好。  相似文献   

4.
金属纳米杆弹性模量的直接原子计算   总被引:3,自引:0,他引:3  
吴恒安  王秀喜  倪向贵  王宇 《金属学报》2002,38(11):1219-1222
用直接原子计算(分子动力学)的方法来模拟金属纳米杆的拉伸实验,得到纳米杆单向拉伸屈服前的真应力--应变曲线,金属单晶纳米杆屈服前的最大弹性应变约为0.11,应力应变关系表现为非线性弹性,拉伸模量随应变增大而提高,表现为明显的“应变刚化”行为。分析了产生这一现象的原因,主要是尺寸微小,内部无缺陷,弹性变形机理为晶格常数变化,而原子间相互作用势函数导数为增函数。小尺寸和表面效应也是导致纳米杆应变刚化的原因。  相似文献   

5.
为了研究孪晶间距的大小对纳米钨力学性能及变形机理的影响,利用分子动力学对不同孪晶间距的孪晶钨进行了单轴拉伸模拟。使用近邻列表技术(CNA)和位错分析方法(DXA)对拉伸过程中纳米钨的变形失效过程和微结构演化进行了表征分析,从而揭示孪晶间距对纳米钨力学性能影响微观机理。结果表明:孪晶钨变形过程中出现的相变、孪晶界的变形以及去孪晶化的现象会改变孪晶钨中裂纹的扩展方式,提高孪晶界的变形能力;而随着孪晶间距的减小即孪晶密度的增加,可变形的孪晶界增多,导致纳米孪晶钨的断裂应变增加。由于孪晶界中存在能量较高的相互作用的特殊三原子结构使纳米钨中更容易出现晶体缺陷,缺陷会在拉伸载荷作用下快速形成裂纹,导致晶体断裂失效,严重降低了纳米钨的屈服强度。此外,孪晶界的存在显著降低了几何必须位错的数量同时阻碍了位错的滑移运动,位错难以发射和运动,从而导致塑性变差。  相似文献   

6.
黄建洪 《热处理》2012,27(6):81-84
2影响原子扩散的因素—晶体结构与相变2.1晶粒大小众所周知,晶界部位晶格畸变大,原子排列凌乱,原子处于高能状态,理应对扩散有利。许多文献都认为原子首先从晶界渗入内部。明克维奇的试验表明,碳在细晶粒的钨中扩散系数比在单晶  相似文献   

7.
本文基于分子动力学方法,对含孔洞的双晶TiAl合金试样进行了单轴拉伸模拟,在纳米尺度下研究了材料变形和断裂过程中的缺陷演化行为及其声发射响应。研究发现:孔洞大小和位置对材料的弹性模量影响较小,屈服强度随孔洞尺寸的增大而降低;进入塑性变形后,孪晶界对孔洞边缘连续发射的位错有阻碍作用,使晶体强度增加;达到屈服应力时,含晶界孔洞的试样更容易产生稳定的位错结构,阻碍其他位错运动,从而提高了晶体强度;通过对拉伸过程中的声发射信号进行分析,发现声发射信号主要来源于晶格振动,并且具有较大的功率值范围和较低的中值频率;位错滑移的声发射信号表现出宽频域的特点,位错增殖和位错塞积的声发射信号表现出低功率的特点;裂纹扩展的声发射信号属于突发型信号,表现为高频率、高功率的特征。  相似文献   

8.
采用晶体塑性理论,建立了三维晶界模型,以Al6111-T4板材为例,考虑了相邻晶粒之间的晶界约束作用对应力-应变的影响规律。研究表明,晶粒相对尺寸越大,晶界约束作用越大,材料的流动应力就越大,应变分布越均匀。  相似文献   

9.
针对纳米晶体材料的微观结构,构建了一种复合相本构关系来描述纳米晶体材料的力学性能。纳米晶体材料由晶粒和晶界两部分组成,其中晶界相又包含两部分:晶界第一部分与晶界第二部分。晶界第一部分与晶粒应变相等,这两者的结合体又与晶界第二部分是等应力的,这更符合纳米晶材料的实际变形情况。然后,建立的模型被用以计算含孔隙纳米晶体材料的弹性模量,并将提出的计算含空隙纳米晶体材料弹性模量的模型拓展为描述纳米晶体材料小塑性变形条件下的应力-应变关系。计算结果与试验数据相比较表明,本模型可以较好地反映晶粒尺寸和孔隙率对纳米晶体材料弹性模量与屈服强度的影响。  相似文献   

10.
研究马氏体相变中原子的位移方式具有重要理论意义。本文从理论上综合分析了奥氏体转变为马氏体过程中原子的移动方式。奥氏体转变为马氏体时,在相变驱动力作用下,原子主要是按照K-S位向关系从奥氏体晶格中直接转移到马氏体晶格上去的。当γ→α马氏体时,以晶体缺陷为起点出现涨落,原子无扩散的,集体协同位移,进行了晶格参数的调整,完成γfcc→αbcc-M的晶格重构。原子移动距离远远小于一个原子间距,比K-S切变位移小一个数量级,耗能小。奥氏体转变为马氏体将产生应变能,为了调整应变能和适应新旧相晶格匹配,而形成相变位错、层错或相变孪晶等晶体缺陷以调整应变能,从而完成马氏体晶格重构。切变位移"理论"是错误的。  相似文献   

11.
采用高压扭转技术在550 ℃、1.5 GPa压力下成功制得具有细晶组织的难熔金属钨,借助EBSD技术研究了高压扭转变形组织晶粒尺寸、晶界角度以及晶粒取向的演化规律,结合纳米压痕实验结果,分析了应变对工业烧结纯钨微观力学性能的影响机理。实验结果表明,高压扭转后材料内部微孔隙有效闭合,组织细化显著,大角度晶界含量快速升高。在应变较低时出现较为明显的沿<101>方向的择优取向;随着应变的增加,择优取向消失,组织趋于均匀。应变较高(扭转5圈)时在三叉晶界处出现了细小的动态再结晶晶粒。高压扭转变形引起的孔隙闭合、晶粒细化、晶格畸变、位错密度增加和大角度晶界形成,导致屈服强度和纳米硬度随变形量的增大而不断提升;而在致密度、残余内应力和高密度位错的共同作用下,变形试样的弹性模量显著高于工业烧结纯钨,但随着应变量的增大略有降低。  相似文献   

12.
用热模拟试验机研究了C-Mn-Mo-Nb针状铁素体钢的相变特性,采用拉伸和压缩方法检测了试验钢在奥氏体化加热后冷却至不同温度时的屈服应力和弹性模量,采用高温拉伸试验机对比检测了加热至奥氏体化以下,试验温度时钢的屈服应力和弹性模量。结果表明:在奥氏体化后冷却过程中,钢的屈服应力在650~500℃相变温度范围内从约75 MPa提高至约450 MPa,但弹性模量在针状铁素体相变温度区间(600℃左右)出现谷值。在550℃以上,从室温加热至试验温度拉伸方法获得钢的屈服应力和弹性模量较奥氏体化加热法的高。相变过程中,晶体结构转变及位错密度增加是弹性模量波谷产生的主要原因;晶体结构转变、位错密度增加和析出使屈服应力急剧增加。而相同组织状态下,钢的屈服强度和弹性模量主要受温度影响。不同测试方法所得数据的差异,主要是由不同的组织结构转变而非测试方法造成。  相似文献   

13.
李凯  岑风 《物理测试》2014,32(4):9-14
介绍了机加工对金属圆棒拉伸试样力学性能检测结果的影响。按照国家标准中关于圆棒拉伸试样的机加工要求以及金属材料室温拉伸试验方法,分别从圆棒拉伸试样的尺寸公差、形状公差、表面粗糙度及过渡圆弧半径4个方面进行了讨论。结果表明,形状公差越大,抗拉强度和断后伸长率越小;尺寸正公差越大,其断后伸长率越大,尺寸负公差越大,其断后伸长率越小;表面粗糙度越大,抗拉强度和断面收缩率下降的趋势越明显,表面粗糙度越小,抗拉强度和断面收缩率逐渐增大且慢慢趋于缓和;过渡圆弧R越大,其上屈服强度是逐渐增大的,但是当过渡圆弧满足R≥0.75d0后,其上屈服强度的增加逐渐变缓。  相似文献   

14.
运用分子动力学技术,结合分析型嵌入原子方法(AEAM)模拟计算了平均晶粒尺寸为2.09~5.23 nm的纳米多晶Ni的微观结构和力学性能.从原子能量分布、径向分布函数(RDF)、局域晶序结构的角度分析了纳米多晶Ni的晶界和晶粒结构,发现晶界部分所占的比例随晶粒尺寸的减小明显提高,结构与普通微晶的相似,纳米晶体的结合能较普通晶体的低.单向拉伸模拟结果表明:纳米多晶Ni的强度与晶粒尺寸之间出现反常Hall-Petch关系;弹性模量的降低与纳米尺度结构特征相关.  相似文献   

15.
采用晶体相场模型,分别模拟了小角对称倾侧双晶体系在高温接近熔点温度和达到固-液共存温度时,在外加应变作用下的小角度晶界以及位错的湮没过程.研究表明,没有加外应变时,当体系接近熔点温度情况下,晶界处的晶格位错周围出现预熔化现象,此时预熔化区域内的位错结构并没有发生改变;当温度达到高温固-液共存温度时,预熔化区域明显增大.经高温预熔化后,再施加外应变作用,这时,已存在预熔化的晶界位错发生滑移运动,然后出现位错相遇湮没,晶界消失,同时,伴随的预熔化区域也消失.在预熔化温度情况下的晶界位错的湮没规律基本相同.预熔化温度越接近熔点温度,位错缺陷周围预熔化区域出现晶格原子软化现象越明显,降低了位错周围原子之间的结合强度.这时,在施加外应变作用下,晶格原子对位错滑移运动的阻力降低,位错运动得更快.对于达到高温固-液共存温度情况,此时施加外加应变后,原预熔化区域会出现应变诱发更大面积的预熔化区域.观察到外加应变诱发预熔化区域变化过程中,出现了位错成对地增殖,并发生位错对的旋转和湮没等相互作用;同时,外加应变诱发的预熔化区域的形状随预熔化区内的位错的相互作用而发生变化,出现了预熔化区域相向扩展、连通,然后又分解、分离;尽管这时的预熔化区域形状随外应变作用在不断变化,但此时的预熔化区并不会出现合并消失现象,与较低的预熔化温度的位错运动情况完全不同.  相似文献   

16.
预熔是指晶体在低于熔点温度时,晶界处预先出现类似液体而块体仍为晶体状的现象。采用晶体相场法研究原子密度对晶界预熔的影响。结果表明:晶界处液相熔池的早期演化主要涉及4个形态特征:固-固状态→小液滴状态→较大的液相熔池→均质熔融层。通过对比不同平均原子密度下的微观结构和能量变化,表明平均原子密度对液相池的形态特征敏感。二维与三维模拟结果表明,平均原子密度的降低能抑制刃型位错聚集区域中原子的结晶相特征,这有助于液相熔池的形成。从热力学的角度验证平均原子密度与液相熔池宽度之间的关系,在一定程度上为后续施加高温应变提供前提条件。  相似文献   

17.
采用分子动力学模拟方法研究了孔洞在不同温度、位置以及尺寸下对多晶γ-TiAl合金裂纹扩展的影响。结果表明,含孔洞式缺陷多晶γ-TiAl合金在1~750 K时为脆性解理断裂,1000 K和1200 K为韧性蠕变断裂。孔洞位于晶界和三叉晶界上时,合金更容易失效。与完美晶体相比,微孔洞的存在增加了多晶γ-TiAl合金的塑性。当孔洞半径大于1.0 nm时,多晶γ-TiAl合金的屈服应力和屈服应变急剧降低,材料发生失效的时间提前。孔洞尺寸的不同会影响材料的断裂方式,当孔洞半径R≤0.8 nm时,含孔洞多晶发生沿晶断裂;当R>0.8 nm时,多晶γ-TiAl合金的孔洞不断扩大逐步占满整个晶粒,发生穿晶断裂。  相似文献   

18.
建立一种耦合滑移、动态再结晶以及晶界滑移的晶体塑性模型以仿真镁合金的高温变形行为及织构演化。首先,通过实验测量单轴拉伸、压缩后的织构以及显微组织演化,研究AZ31B镁合金在300°C的变形机制。结果发现,动态再结晶在应变小于0.2时起到细化晶粒的作用,之后晶界滑移在变形过程中起显著作用。此外,建立晶界滑移模型来评估由晶界滑移产生的应变以及晶粒转动,并与多晶体塑性模型VPSC相耦合。所建立的VPSC-DRX-GBS模型可以很好地计算应力?应变曲线、晶粒尺寸、织构演化以及实验中所发现的拉伸与压缩织构演化显著差异。计算的晶界滑移贡献率在拉伸条件下显著高于压缩条件的,这是由于在拉伸时晶界上更易产生孔洞形核。  相似文献   

19.
利用分子动力学模拟研究多晶纳米丝和单晶钼纳米丝在拉伸形变行为上的差异.结果表明:单晶纳米丝比多晶纳米丝具有更高的弹性模量、屈服应力和断裂应变,且在拉伸过程中伴随更多的结构转变和无序化,导致超塑性的出现;多晶纳米丝拉伸时的颈缩从应力高度集中的晶界开始,结构转变也仅局限于此晶界附近,系统的整体结构几乎没有受到影响,且晶界处的高应力在控制多晶纳米丝的塑性形变和断裂过程中起着决定性的作用;纳米丝拉伸时由应力引起的结构转变也是塑性变形的一种重要机制.  相似文献   

20.
采用无机溶胶.凝胶法,以钨酸氨和V2O3的为原料在高温下共熔水淬实现钨掺杂,在云母片(001)表面制备W 掺杂VO2薄膜.采用AFM、XS、XPD分析了薄膜形貌和微观结构,利用FTIR检测薄膜在不同温度下的红外透过率,确定W掺杂薄膜的相变温度.结果表明,钨元素以W6 形式掺入VO2晶体,取代晶格中部分V原子.掺杂后VO2薄膜的半导体一金属相变温度明显下降,每掺入1%W6 ,VO2薄膜相变温度下降19.8℃.当掺入W6 量为2.04%,其相变温度下降到28℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号