首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
吴静  董欣欣  刘丽萍 《金属热处理》2020,45(12):102-105
以冷轧TRIP980钢为研究对象,探讨了退火温度、过时效温度和过时效时间对钢板组织性能的影响。结果表明:退火温度从800 ℃降低至760 ℃,随着奥氏体化程度的降低和原奥稳定性的增强,冷却后组织中硬相含量更低,残奥含量更高,宏观表现为拉伸强度降低、伸长率提高;过时效温度从360 ℃提高至400 ℃,随着贝氏体体积分数的提高,拉伸强度提高;过时效时间从600 s延长至1500 s,随着硬相贝氏体的软化和残奥稳定性增大,拉伸强度降低、伸长率提高。  相似文献   

2.
通过扫描电镜(SEM)、X射线衍射(XRD)和室温拉伸等技术对DP1180钢的微观结构和力学性能进行了表征。结果表明,冷轧退火后钢的微观组织主要由铁素体(F)、马氏体(M)和少量贝氏体组成。在230℃过时效处理时,马氏体主要呈板条状,铁素体呈多边形,粒状贝氏体含量较少。随着过时效温度的升高,板条状马氏体含量减少,粒状贝氏体增加,碳化物明显增加。随过时效温度的不断上升,抗拉强度降低,伸长率增加。过时效温度为270℃时,抗拉强度为1255.0 MPa,伸长率为11.39%,强塑积为14.29 GPa·%,综合力学性能最佳。DP1180钢的合理的过时效温度区间为230~306.8℃。  相似文献   

3.
高云  吉武俊 《铸造技术》2014,(10):2444-2446
研究了DP双相钢在连续退火工艺中加热温度、退火时间、缓冷温度和过时效温度对其组织和力学性能的影响。结果表明,随着临界区加热温度的升高,DP钢组织中的马氏体逐步转化为由铁素体和贝氏体组成的混合组织,其抗拉强度先升高后降低。随着退火时间的增加,抗拉强度升高而屈服强度和伸长率降低。随着缓冷温度的降低或过时效温度的升高,DP钢抗拉强度和屈服强度呈下降趋势,而伸长率增加。  相似文献   

4.
采用SEM与TEM等方法分析了不同退火温度和时效温度对C-Si-Mn-Nb系超高强冷轧双相钢的显微组织和力学性能的影响.结果表明:热轧板经冷轧退火后,综合力学性能改善,屈服平台消失.退火温度从780℃升高到820℃,带状组织逐渐消失,马氏体硬度下降,双相钢强度降低,伸长率提高;850℃退火时,铁素体体积分数的显著降低,部分马氏体内部条状形貌的出现及非马氏体体积分数的增加,导致各项力学性能明显下降.过时效温度从270℃升到330℃,马氏体岛分解,颗粒状析出相与非马氏体组织增多,导致抗拉强度降低,屈服强度及伸长率升高;360℃时形成板条贝氏体组织恶化了综合力学性能.试验钢经820℃退火,300 ~330℃之间过时效,获得抗拉强度大于1020 MPa,伸长率大于16%的最优力学性能.  相似文献   

5.
利用光学显微镜(OM)、透射电镜(TEM)等实验方法,研究了回火工艺对150 mm厚的核电站用16MND5钢板组织和力学性能的影响。结果表明:在640℃回火时,随保温时间的延长强度呈下降趋势,伸长率和0℃冲击功均是先升高后降低。当保温时间为225 min时,随回火温度的升高,强度降低,伸长率变化不大,冲击功略有提高。分析认为:贝氏体和马氏体的复相组织向平衡组织的转变会导致试验钢板整体强度呈下降趋势,铁素体含量的增加是伸长率和冲击功提高的主要原因,而合金渗碳体的聚集长大则造成冲击功降低。  相似文献   

6.
利用光学显微镜(OM)、透射电镜(TEM)等实验方法,研究了回火工艺对150 mm厚的核电站用16MND5钢板组织和力学性能的影响。结果表明:在640℃回火时,随保温时间的延长强度呈下降趋势,伸长率和0℃冲击功均是先升高后降低。当保温时间为225 min时,随回火温度的升高,强度降低,伸长率变化不大,冲击功略有提高。分析认为:贝氏体和马氏体的复相组织向平衡组织的转变会导致试验钢板整体强度呈下降趋势,铁素体含量的增加是伸长率和冲击功提高的主要原因,而合金渗碳体的聚集长大则造成冲击功降低。  相似文献   

7.
为了优化780 MPa级冷轧高强双相钢的生产工艺参数,利用DIL805A膨胀仪测定了试验钢的相变点,绘制了不同冷速下的CCT曲线;采用连续退火模拟机进行了连续退火试验,通过扫描电镜(SEM)、电子背散射衍射(EBSD)和拉伸试验等方法研究了退火温度和过时效温度对试验钢显微组织和力学性能的影响。结果表明:随着退火温度的升高,试验钢的屈服强度逐渐升高,抗拉强度先升高后降低,断后伸长率则先减小后增加。随着过时效温度的升高,试验钢的抗拉强度降低,屈服强度和断后伸长率变化不大。当过时效温度高于300℃后,淬火马氏体开始分解,回火马氏体比例增多,导致试验钢的抗拉强度显著降低。试验钢在800℃退火、280℃过时效后的力学性能最好,抗拉强度为787 MPa,断后伸长率达到21. 5%,屈强比仅为0. 48。  相似文献   

8.
抗大变形管线钢加热并保温一段时间后,钢管力学性能将发生变化,通常屈服强度、屈强比升高,均匀延伸率降低,应力-应变曲线形状改变等,这些性能变化将降低钢管的抵抗变形的能力。利用扫描电镜等设备研究了冷却工艺对21 mm X70HD抗大变形管线钢组织、性能和应变时效硬化的影响。结果表明,随开始冷却温度的降低,先共析铁素体含量逐渐增加,贝氏体含量逐渐降低,贝氏体由粒状逐渐向板条状转变,当开始冷却温度在700℃时,钢板具有最佳的综合力学性能,试验钢板通过制成1016 mm钢管,钢管在200℃时效保温5 min下,纵向屈服强度Rt0.5为509 MPa,抗拉强度Rm为692 MPa,延伸率为42%,屈强比Rt0.5/Rm为0.73,Rt1.5/Rt0.5为1.19、Rt2.0/Rt1.0为1.10,均匀变形伸长率达到9.5%。  相似文献   

9.
设计开发了Cr-Mo-Nb-Ti-B系1180 MPa级高强复相钢产品。从组织控制的角度引入了贝氏体,以弥补铁素体与马氏体之间的软硬相高强度差,采用Gleeble-3500热模拟试验机、拉伸试验机和光学显微镜研究连续退火工艺中均热温度和过时效温度对复相钢力学性能及组织的影响规律。结果表明,均热温度在720~840 ℃时,随着温度的升高,贝氏体和马氏体含量逐渐增加,抗拉强度和屈服强度整体上不断提升,但超过840 ℃后抗拉和屈服强度降低。而随过时效温度的升高,抗拉强度呈单调递减趋势,屈服强度先波动后逐渐降低。当均热温度为790 ℃、过时效温度为280 ℃时,连退板的组织为铁素体、贝氏体和马氏体的复相组织,复相钢具备良好的加工成形性,折弯性、扩孔性能也均较同级别双相钢产品有大幅提升。  相似文献   

10.
研究了强力旋压制备的大变形率15-5PH马氏体沉淀硬化不锈钢薄壁筒形件组织和性能与时效温度之间的关系。研究结果表明,旋压试样在450~620 ℃温度范围内时效组织仍然存在比较明显的各向异性,与未经旋压试样时效后组织相比,旋压试样时效后组织细化,沉淀相的分布更均匀,尺寸更小;随着时效温度的升高,旋压时效试样的拉伸强度不断降低,断后伸长率提高;同一时效温度下,旋压时效后的试样拉伸强度比未经旋压试样时效后的拉伸强度高,但断后伸长率低。  相似文献   

11.
利用连续退火试验机研究了连续退火工艺对电镀锡板组织和性能的影响.结果表明,在660 ~ 740℃退火温度范围内,随退火温度升高,晶粒尺寸逐渐增大,硬度降低.以24℃/s加热速率升温时,在达到700℃退火温度前,再结晶过程已基本完成,且退火5s后,继续延长退火时间至45 s过程中晶粒长大速率减缓,硬度变化不明显.过时效处理对电镀锡板力学性能有较大影响.随过时效开始温度的变化,固溶强化和析出强化呈相互竞争关系.过时效开始温度由480℃降低到350℃过程中,钢板的硬度和强度呈现先减小后增大的趋势,伸长率在过时效开始温度为400℃时开始降低.纳米级的Fe3C伴随过时效开始温度的降低而大量析出,且弥散分布在铁素体基体内,对钢板的强度有较大影响.  相似文献   

12.
通过真空感应炉冶炼了Q690qE试验钢,并采用不同的控制轧制+超快冷工艺将试验钢轧制成12 mm厚的钢板。对钢板组织和性能进行了检测,研究了终冷温度、终轧温度对钢板组织和性能的影响。结果表明,随着终冷温度的提高,组织中上贝氏体含量减少,粒状贝氏体含量增加,M/A组织尺寸增加;抗拉强度和屈服强度均降低,伸长率逐渐提高,低温冲击韧性大幅降低;随着终轧温度的降低,组织中粒状贝氏体含量有所减少,M/A组织尺寸减小,抗拉强度和屈服强度提高,屈强比提高,伸长率下降,低温冲击韧性大幅升高。  相似文献   

13.
使用真空感应炉冶炼了试验钢,采用不同的控制轧制+超快冷工艺将试验钢轧成12 mm厚的钢板,对钢板金相组织进行了观察,对拉伸和冲击性能进行了检测。结果表明,试验钢组织均为贝氏体+铁素体+少量M-A岛;随着开冷温度升高,铁素体含量减少,抗拉强度和屈服强度明显提高,屈强比略有增加,伸长率降低,冲击功显著提高;随着终冷温度升高,组织中板条贝氏体转变为粒状贝氏体,M-A岛尺寸和含量增加,抗拉强度和屈服强度降低,屈强比显著降低,冲击功先提高后略有降低;随着冷却速率提高,铁素体含量减少,贝氏体板条细化,抗拉强度逐渐升高,屈服强度先升高后降低,屈强比小幅波动,伸长率先下降后保持不变,冲击功略有提高。  相似文献   

14.
针对一种0.14C-2.72Mn-1.29Si冷轧高强钢进行了轧制和不同等温时效温度的退火处理,得到了两种不同退火基体的组织特征,均具有较好的综合力学性能。利用FESEM、XRD、TEM和拉伸试验对比分析了不同退火基体试验钢的微观组织、力学性能和加工硬化行为。研究表明:试验钢在220~300℃等温时效后钢板的基体组织主要由铁素体和马氏体构成,240℃等温时效后钢板的综合性能最佳,屈服强度为672 MPa,抗拉强度为1333 MPa,总伸长率为13%,屈强比为0.50,组织中含有5.75%的残留奥氏体。而试验钢在390~430℃等温时效后钢板的基体组织主要由铁素体和贝氏体构成,在390℃等温时效后钢板的综合性能最佳,屈服强度为505 MPa,抗拉强度为1115 MPa,总伸长率为17%,屈强比为0.45,组织中含有11.17%的残留奥氏体。铁素体+马氏体基体退火钢优异的综合力学性能主要源于细晶强韧化;而铁素体+贝氏体基体退火钢优异的性能主要源于细晶强韧化和TRIP效应增塑,这两种机制的共同作用,使得钢板在高强度的同时,还具有较好的塑韧性。  相似文献   

15.
采用Gleeble-3500热模拟试验机、拉伸试验机和光学显微镜研究了连续退火工艺中均热温度、缓冷温度和过时效温度对980 MPa级复相钢力学性能及组织的影响规律。结果表明,经连续退火处理后980 MPa级复相钢组织为典型的铁素体、贝氏体、马氏体组织,随均热温度的提高,贝氏体和马氏体含量逐渐增加,从而提高抗拉强度和规定塑性延伸强度;缓冷温度则能改变新生铁素体晶粒大小及马氏体含量,从而调控复相钢力学性能;随着过时效温度的升高,部分颗粒状碳化物开始析出,能够降低马氏体的强度即改善复相钢塑性。从多元调控的角度逐步优化980 MPa级复相钢的综合力学性能,最终确定均热温度800 ℃、缓冷温度700 ℃和过时效温度340 ℃为最优工艺参数。  相似文献   

16.
对试验钢进行了不同的两相区直接淬火+回火处理。对试样显微组织进行了观察,并对力学性能进行了检测,研究了淬火温度和回火温度对试验钢组织和性能的影响。结果表明,钢板回火显微组织以多边形铁素体+岛状回火马氏体为主。随着直接淬火温度的升高,回火马氏体含量增加,铁素体含量减少,组织中少量珠光体逐渐转变为贝氏体;屈服强度和抗拉强度均升高,屈强比先保持恒定后有所升高,伸长率逐渐下降,冲击功则是先大幅降低后几乎不变。当回火温度低于400℃时,马氏体形态没有明显改变;当回火温度超过500℃时,马氏体岛开始分解,碳化物析出量增加。随着回火温度升高,抗拉强度几乎呈线性降低,屈服强度则先升高后降低,屈强比升高,伸长率和冲击功先下降后提高。  相似文献   

17.
采用连退模拟试验机、彩色金相、X衍射和拉伸试验等手段,对无硅高铝的相变诱导塑性(TRIP)钢在400~460℃贝氏体等温后得到的组织和性能进行研究,探讨了贝氏体等温温度对组织和性能的影响.结果表明:在400℃保温300 s,该实验钢的抗拉强度达到613MPa,断后伸长率达30%.随着贝氏体等温温度的升高,抗拉强度也升高,而伸长率降低.随着残奥体积分数和碳含量的减小,试样的屈服强度降低,抗拉强度升高,强塑积和断后伸长率都随之降低.  相似文献   

18.
对冷轧1100 MPa和1500 MPa级超高强马氏体钢板进行了不同温度(200~400 ℃)和时间(120~360 s)的过时效处理,采用光学显微镜、扫描电镜、透射电镜和拉伸试验机等手段分析了过时效处理对马氏体钢板组织与性能的影响。结果表明,随着过时效温度的升高和时间的延长,抗拉强度下降,断后伸长率逐渐升高;屈服强度在250 ℃时先升高,250~300 ℃相对稳定,而后呈逐渐降低趋势。对两种以马氏体相为主的超高强钢经250 ℃´240 s过时效处理后,均可得到强塑性结合良好的综合性能,当过时效温度高于300 ℃,保温时间为360 s时,马氏体大量分解,抗拉强度和屈服强度显著下降。  相似文献   

19.
采用控轧控冷(TMCP)+回火工艺试制了高强度工程机械钢板Q550,研究了不同温度回火后性能和组织的变化.结果表明,回火使抗拉强度持续降低;400 ~ 450℃回火后屈服强度增加,而伸长率降低;500℃以上回火后屈服强度随回火温度上升而下降,而伸长率和低温冲击韧性随着回火温度上升而增加,400 ~ 500℃出现回火脆性.在550℃回火60 min后M/A岛组织分解,贝氏体板条合并粗化,位错密度大大降低,并析出更加细小弥散,直径约为30 nm的Nb、Ti碳氮化物,钢板性能有所提高:屈服强度为725 MPa;抗拉强度为780 MPa;伸长率为20%;-60℃冲击吸收能量平均值为186.7 J.  相似文献   

20.
采用扫描电镜、EDS分析、拉伸和低温冲击试验等研究了低碳舰船高强钢在固溶和不同温度时效处理后的显微组织和力学性能。结果表明:试验钢在900 ℃保温30 min固溶处理后的显微组织为多边形铁素体和贝氏体/马氏体,屈服强度和抗拉强度较低,分别为505 MPa和625 MPa。随着时效温度的升高,试验钢的强度出现了先升高后降低的变化趋势,在时效温度为500 ℃时的抗拉强度和屈服强度最高,分别为783 MPa和747 MPa,断后伸长率为11.5%,-20 ℃的冲击吸收能量为96 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号