首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 74 毫秒
1.
小热变形半固态A2017合金的二次加热组织与半固态轧制   总被引:6,自引:0,他引:6  
对单辊搅拌技术制得的A2017半固态材料小热变形后二次加热时的组织演化进行了研究。小热变形后的半固态材料加热到半固态区后可获得细小的球形组织;在加热过程中,由于位错能与界面能的存在以及溶质的扩散使合金发生块状化、再结晶、熔断球化3阶段变化;小变形促进该过程的进行;由于细小球形组织成形性能好、半固态轧材的断裂强度提高了75MPa,延伸率提高了16%。  相似文献   

2.
在二次加热过程中,为了使坯料中的温度均匀分布并获得细小的球化组织,必须准确控制加热电流、加热时间与坯料温度之间的关系。以A356合金为对象,采用中频电磁感应器进行了二次加热工艺的研究。结果表明,对于尺寸为45mm×70mm的棒状坯料,线圈尺寸取70mm×100mm,加热路线采用三段加热+保温,经过约10min的二次加热,坯料达到了预期的状态,可以满足后续成形的要求。  相似文献   

3.
ZL101合金半固态二次加热   总被引:4,自引:1,他引:4  
采用半固态合金二次加热,对半固态坯料施加合理的二次加热路径,重新获得适于后续加工的具有近球状固相颗粒均匀分布的半固态组织。采用功率为20kW,频率为30kHz的高频感应加热装置,研究了采用再熔融加热法制备的ZL101半固态合金坯料的二次加热过程。结果表明:为了获得适于最终成形的半固态组织,有必要把半固态坯料二次加热过程分为几个加热速率不同的加热阶段,然后在半固态温度区间某一需要加工温度下进行适度保温。通过实验给出了ZL101合金半固态坯料二次加热条件,并讨论了二次加热条件对半固态组织演化的影响。  相似文献   

4.
利用波浪形倾斜板振动装置制备了Al-6Si-2Mg半固态合金坯料,研究了二次加热工艺条件对其组织的影响规律。结果表明,在一定保温时间内,随着保温温度升高,溶质扩散加快,晶界处液相区域趋于连续,液相率升高;在界面自由能作用下,平均晶粒直径先增大后减小,平均晶粒圆度和晶粒密度逐渐降低;当保温温度一定时,随着保温时间的延长,共晶液相不断增加,并形成连续的液相网络把晶粒分开;为降低界面自由能,晶粒直径先增大后减小,而平均圆度一直降低,液相率升高。610℃保温60min时,可获得理想的球形晶粒悬浮于液相的半固态组织。  相似文献   

5.
研究了近液相线铸造A380铝合金在563、573及583℃保温5~60min的二次加热工艺条件下的组织演变。结果表明,随着保温温度的升高和保温时间的延长,晶粒平均等积圆直径增加,晶粒圆整度降低,温度越高,变化的趋势越快。半固态坯料加热温度为583℃,保温时间为20min时,能够获得较好的二次加热组织。此时,晶粒平均等积圆直径为49.74μm,晶粒平均圆整度为1.75。  相似文献   

6.
新型倾斜板技术制备A2017半固态合金   总被引:7,自引:2,他引:5  
采用新型的波浪型倾斜板技术,对制备半固态A2017合金进行了研究.熔融的合金在倾斜的波浪型冷却板表面非均匀形核,并在流动与碰撞剪切的条件下生长,逐渐从粗大的等轴晶网络演化为细小的近球形晶.通过试验发现,在浇注温度为720 ℃、倾角为45°的条件下,选用长度为400~500 mm有间隔波浪的室温倾斜板可获得细小均匀的合金组织.坯料在二次加热温度为625 ℃、保温时间为60 min的条件下,球化理想,适合于触变成形.  相似文献   

7.
半固态AlSi7Mg合金二次加热工艺与组织转变机制   总被引:18,自引:0,他引:18  
张奎  张永忠 《金属学报》1999,35(2):127-130
采用电阻炉对用电磁搅拌方法制备的半固态AlSi7Mg合金二次加热,结合金相分析研究了半固态组织的转变机制。实验发现,共晶相中的Si相通过向α相中扩散溶解,其形状从片层状断裂成点链状颗粒,并随着温度升高颗粒细化球化。片层越薄,这一过程发生的温度越低,速度越快。Si溶解到一定程度后共晶部分熔化,初生α相形状、尺寸开始变化。树枝状α相和蔷薇花状α相球化,但前者变大,后者变小为原始尺寸的1/2-1/4。近  相似文献   

8.
采用SCR(shearing-cooling-roll)技术制备了A2017半固态合金, 对合金液在不同温度下进行浇注, 且对辊-靴型腔中合金组织的演化过程进行了跟踪, 分析了SCR过程中凝固形核的热力学条件以及层流剪切特性.结果表明: 随着合金液浇注温度的降低, 坯料内部组织从粗大的枝晶或菊花晶转化为细小的近球形晶.合金液首先在轧辊和靴子表面结晶形核, 在液流冲击及剪切的作用下, 晶核从型壁上脱落进入残余液相形成游离晶; 随着辊-靴型腔内合金固相率的增加, 游离晶在以枝晶方式生长过程中受到层流剪切作用, 二次枝晶臂断裂破碎形成自由晶; 自由晶在层流剪切作用下进一步发生碰撞和摩擦, 最后逐渐趋于球形或椭球形.  相似文献   

9.
SCR工艺参数对A2017半固态合金组织的影响   总被引:6,自引:1,他引:5  
王顺成  温景林  李英龙  陈彦博  周天国 《铸造》2003,52(10):740-744
采用自行设计的SCR实验机制备A2017半固态合金,研究了SCR工艺参数对A2017半固态合金组织的影响。实验结果表明,合金液浇注温度和轧辊冷却水流量共同影响辊靴间隙中半固态合金的固相率,降低浇注温度或者增大冷却水流量,辊靴间隙高固相率合金区间增长,晶粒尺寸变小;减小辊靴间隙或者提高轧辊转速提高合金层流剪切强度,利于枝晶破碎;增大出口半固态浆料冷却速率能有效抑制晶粒继续生长,保留其完整的非枝晶半固态组织。合金液浇注温度为760~780℃,辊靴间隙为4~6mm,轧辊冷却水流量200~300ml/s条件下,SCR技术可获得浆料状A2017半固态合金,凝固后坯料为均匀、细小的非枝晶等轴晶组织,晶粒大小在40~50μm之间,SCR技术是一种制备半固态加工坯料的理想方法。  相似文献   

10.
针对半固态AlSi6Mg2合金的二次加热,实验优化了线圈和坯料的尺寸,保证了坯料加热过程中各个部位的温度均匀性;制定出单工位感应加热和六工位连续加热的二次加热工艺,在六工位连续操作过程中每个坯料加热11.5min,平均每2.3min提供一个加热完成的坯料,在工艺流程上实现了二次加热和半固态压铸的很好衔接。分析了二次加热过程中的组织演变.最终得到从坯料外形到内部组织都适合于半固态压铸的坯料。  相似文献   

11.
通过自行研制开发的新型半固态连续机械搅拌设备,制备了半固态铝合金,并对半固态坯料在半固态温度区间重熔加热,研究不同重熔温度、时间下半固态组织的变化规律.研究表明:保温温度越高,晶粒长大和球化速度加快,保温时间越短;随着保温时间延长,晶粒逐渐长大和球化,液相份数增加.半固态铝合金Y112重熔加热适宜温度区间为565~575℃.  相似文献   

12.
原位内生TiB_2/Al-4Cu复合材料半固态二次加热组织演化   总被引:1,自引:1,他引:0  
对原位内生TiB2/Al-4Cu复合材料半固态坯料进行二次加热,利用光学显微镜,图像分析仪等手段,对坯料二次加热微观组织的演化进行了研究。结果表明,随着加热温度的升高和保温时间的延长,液相分数增加,α(Al)晶粒发生了长大和圆整化。TiB2/Al-4Cu复合材料合适的半固态重熔参数为:加热温度570~600℃,保温时间小于10min。组织演化机制分析表明,二次加热初期,液相少,晶粒主要通过快速合并长大。随着加热温度的升高和保温时间的延长,液相增加,晶粒主要通过原子扩散缓慢长大并发生球化。  相似文献   

13.
采用光学显微镜和图相分析仪,研究了用电阻炉对液相线浇铸法制备的半固态A356合金进行二次加热过程中的组织变化。结果表明:在固液两相区内共晶体首先重熔,共晶相中的Si相通过向α相中扩散溶解,其团块状α相逐渐演变成球状;随着加热温度的升高,α相的生长和球化的速度变快;保温温度过高或保温时间过长,试样易发生变形。二次加热最佳工艺为585℃下保温30min,此时,晶粒平均直径为42.6μm,晶粒平均圆度为2.13。  相似文献   

14.
研究了半固态ZnAl27合金及其二次加热组织。结果表明,半固态ZnAl27合金基本无宏观偏析,其组织为细小均匀的近球形非枝晶,综合力学性能远远高于常规铸造合金;二次加热后,α相进一步球化,边缘变得光滑圆整,可以满足半固态触变成形的需要。  相似文献   

15.
在615~595 ℃不同温度下对A356合金液保温1 min和在600℃保温1~10 min,研究了A356半固态初生相在不同保温温度和保温时间下的组织形貌演变特征.结果表明:在不同的保温温度下,随着保温温度的降低,枝晶组织向蔷薇状和颗粒状组织演变;在相同的保温温度不同的保温时间下,随着保温温度的延长,其初生α-Al的圆形度逐渐变好,但颗粒的大小有先减小后长大的趋势,600℃保温5 min的效果最好;保温的过程由于原子扩散及能量起伏等,合金会发生成分均匀化,消除或大大减小成分过冷,有利于形成球状和颗粒状组织.  相似文献   

16.
采用低温铸造方法制备A356铝合金半固态坯料.在200 t立式油压机上用挤压铸造方法将A356铝合金半固态浆料挤压成件.研究挤压铸造件的微观组织、力学性能,并与液态挤压铸造件进行比较.结果表明,A356铝合金半固态挤压铸造件组织由球形及椭圆形α-Al晶粒和α+Si共晶成分组成,且制件充型完整、无宏观缩孔、组织致密.在比压48.7 MPa,浇注温度575℃,保压时间3s条件下成形的半固态挤压铸造件的抗拉强度、屈服强度、伸长率分别达到278 MPa、225 MPa、13.2%,相比于在比压48.7 MPa,保压时间3s,710℃液态挤压铸造件性能分别提高了8.6%、8.2%、24.5%.A356铝合金半固态挤压铸造成形件具有较高的综合力学性能.  相似文献   

17.
选取了有限元软件ANSYS对镁合金半固态坯料重熔过程进行了数值模拟,并采用电磁感应加热方法。该方法不仅可以提高加热速度,还能使温度均匀化。通过改变电流密度、加热时间、初始温度及频率等参数,找出加热参数与坯料重熔参数之间的关系,以取得通过控制加热工艺参数来获取理想的镁合金半固态坯料组织的理论依据,从而指导生产过程。将所模拟的几组数据比较,选择电流密度为15e6Mm^2,对生产比较有利。考虑到实际的条件。提出了较低电流密度与多极加热结合的想法指导生产。  相似文献   

18.
The microstructural evolution of the A2017 semi-solid alloy billets provided with rheocasting and extruding/extending forming by shearing-cooling-rolling(SCR) technology during reheating in semi-solid state was investigated. The microstructural differences and their generation causes for both billets were also analyzed. The results show that during reheating, the grains of rheocasting billets grow up and spheroidize gradually with the prolongation of isothermal holding time, the eutectic liquid phase at low melting point forms mainly among the grains. However, the grains of the extruding/extending forming billets grow up abnormally through grain coalescence in the initial stage of the reheating, the entrapment of large amount of liquid within grains occurs, and the grain sizes in the reheating billets are coarse and inhomogeneous. Compared with extruding/extending forming billets, rheocasting billets have smaller and uniform grains in reheating microstructure and can rapidly form liquid phase among grains. Therefore, rheocasting billets are more suitable for the semi-solid forming than the extruding/extending forming billets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号