首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
康利梅  雷旻  邹静  梁益龙 《铸造技术》2012,33(3):302-303
将经过不同温度回火后的EA4T钢试样分别加工成夏比V型和U型缺口冲击试样,通过系列冲击试验对EA4T钢的回火脆性进行了研究.结果表明,EA4T钢冲击韧度随回火温度的升高而升高,在550℃左右回火具有高温回火脆性,在高于回火脆性温度区回火时,其冲击韧度将大幅度提高.回火脆性对夏比V尖锐缺口的敏感性更高.  相似文献   

2.
徐文芳  张朋彦  杨鹏 《金属热处理》2020,45(11):187-191
对在线淬火型微合金高强结构钢在400~600 ℃范围内进行回火40 min处理,以研究不同回火温度对试验钢显微组织和力学性能的影响。通过光学显微镜、扫描电镜等进行组织观察分析,同时测量试验钢回火后的强度、硬度及-40 ℃冲击吸收能量等进行力学性能分析。试验结果表明:随着回火温度的升高,试验钢强度及硬度整体呈下降趋势,冲击性能整体上升,并在450~500 ℃出现回火脆性区。同时随着回火温度升高,试验钢组织中马氏体逐渐宽化减少,铁素体含量增多。450 ℃回火时,试验钢的组织为回火托氏体,此时其屈服强度和硬度分别为840 MPa和304 HV3,断后伸长率为14.4%,-40 ℃冲击吸收能量为129 J,达到良好综合力学性能。  相似文献   

3.
通过Gleeble-1500热模拟试验机测量了26CrMo4钢的相变温度,然后对其进行910 ℃水淬和400~740 ℃回火处理,并用光学显微镜、拉伸试验、硬度试验和冲击试验研究了热轧态和淬火、回火后的显微组织和力学性能。结果表明:26CrMo4钢具有优良的淬透性,910 ℃水淬可得到原奥氏体晶粒细小均匀的马氏体组织。26CrMo4钢的强度和硬度随着回火温度的提高而降低,回火温度在400~600 ℃、600~640 ℃和640~730 ℃之间时,抗拉强度随回火温度升高而下降的速率分别为1.685、1.500和2.822 MPa/℃。26CrMo4钢的冲击性能随着回火温度的升高而提高,700 ℃回火时0 ℃冲击吸收能量达到227 J,但继续提高回火温度至730 ℃时0 ℃冲击吸收能量基本保持不变。26CrMo4钢640 ℃和700 ℃回火后均具有较好的低温冲击性能,-70 ℃冲击吸收能量仍分别可达81 J和110 J。  相似文献   

4.
采用显微组织观察、拉伸试验、冲击试验、硬度测试等研究了不同温度回火对E690高强钢显微组织与力学性能的影响。结果表明:920℃淬火态E690钢组织主要为板条马氏体,板条组织较为细密。再进行560~680℃回火试验,随着回火温度的升高,E690钢板条马氏体减少,板条界面变得模糊。随着回火温度的升高,E690钢的屈服强度、硬度逐渐下降,-40℃低温冲击功先升高后降低再升高。560℃回火的E690钢屈服强度、硬度最高,分别达到786 MPa、293 HV。600℃回火的E690钢低温冲击功最高,达到196 J。  相似文献   

5.
采用显微硬度仪、摆锤冲击试验和扫描电镜等研究了PRO500超高强钢经200℃~600℃回火处理后的显微组织和力学性能,并利用图像分析软件定量分析了其冲击断口特征。结果表明:从200℃开始板条马氏体随回火温度升高逐渐分解、合并变宽,在250℃时出现第一类回火脆性;从250℃开始随回火温度的升高,实验钢的硬度降低、冲击吸收能量增加,379℃回火时实验钢的综合力学性能最佳,此时硬度和冲击吸收能量分别为398 HV和54.7 J;冲击断口纤维区面积和冲击吸收能量大小随回火温度的升高变化趋势相近,250℃回火时断口观测区韧窝面积占总面积百分比为20.4%,冲击吸收能量最低,为45 J,600℃时该比例升高至44.5%,最大韧窝直径为17.5μm,冲击吸收能量最大,为72.5 J。  相似文献   

6.
采用箱式电阻炉对高强度建筑钢进行了不同温度的回火,并对回火试样进行了显微组织观察,对拉伸性能和冲击性能进行了检验。结果表明,试验钢回火后组织以铁素体+贝氏体为主,随着回火温度升高,M-A逐渐分解,粒状贝氏体含量减少,铁素体晶粒尺寸增加;抗拉强度、屈服强度、屈强比和冲击功均先升高后降低,伸长率增加,断面收缩率则先略有降低后升高。综合考虑力学性能试验结果,当试验钢回火时间为60 min时,最佳回火温度为600℃。  相似文献   

7.
采用显微组织观察、拉伸试验、冲击试验和硬度测试等方法,研究了4Cr5Mo2NiV模具钢淬火、回火工艺对其显微组织与力学性能的影响。结果表明:淬火态4Cr5Mo2NiV钢组织主要为板条状、针状马氏体以及少量碳化物。随着淬火温度的升高,4Cr5Mo2NiV钢硬度先升高后降低。1010℃淬火,4Cr5Mo2NiV钢硬度达到最大值58.3 HRC。当回火温度在400~650℃,4Cr5Mo2NiV钢回火后出现二次硬化现象。4Cr5Mo2NiV钢最佳淬、回火工艺为1010℃淬火+600℃回火,此工艺下,4Cr5Mo2NiV钢的综合性能最佳。  相似文献   

8.
通过拉伸和冲击试验以及SEM、TEM和EBSD组织观察,研究了不同热处理工艺参数对3.5Ni钢显微组织和力学性能的影响。结果表明:3.5Ni钢在860℃保温1 h水淬后得到细小的板条马氏体(LM)加粒状贝氏体(GB)组织;570℃回火后,LM的板条变粗,GB中的M/A岛也溶解消失,基体上有大量渗碳体析出。随着回火温度的升高,板条继续合并长大,并且开始出现多边形铁素体,渗碳体也不断长大。回火温度为570~600℃时,低温韧性随回火温度的升高而增加,但是继续升高回火温度会使得低温韧性下降。研究表明:3.5Ni低温钢经860℃水淬+600℃回火的热处理可以获得最佳的力学性能。  相似文献   

9.
研究了临界区回火温度对Fe-4Mn-1.2Cr-0.3Cu-0.6Ni中锰钢组织与力学性能的影响。通过热轧后直接淬火+临界区回火的工艺制备试验钢。采用光学显微镜(OM)、电子探针显微分析仪(EPMA)的扫描功能、透射电镜(TEM)、拉伸试验及冲击试验等对轧后淬火态和回火态试验钢的显微组织及力学性能进行了表征。结果表明,试验钢热轧后淬火可获得较高位错密度的板条马氏体,经过临界区回火后获得在回火马氏体基体上分布残留奥氏体的复合组织。随着临界区回火温度的升高,试验钢的抗拉强度呈升高趋势,而屈服强度先下降后增加,伸长率的变化趋势与试验钢中的残留奥氏体含量相关,冲击性能随临界区回火温度的升高呈先升高后降低的趋势。630 ℃回火后试验钢的拉伸性能最佳,650 ℃回火后试验钢的冲击性能最佳,确定最佳临界区回火温度区间为630~650 ℃。  相似文献   

10.
研究了1050 ℃正火+550~700 ℃回火处理对00Cr13Ni5Mo超级马氏体不锈钢中厚板显微组织和力学性能的影响。结果表明,在1050 ℃正火后,随着回火温度的升高,板条状马氏体逐步分解,产生了逆变奥氏体组织,600 ℃回火时其含量最高,之后随着温度的升高逆变奥氏体的含量逐步降低;试验钢的强度、硬度及屈强比均随回火温度的升高先降低后升高。650 ℃回火时,可得到细密的回火索氏体+逆变奥氏体的复相组织,试验钢具有较低的屈强比及良好的冲击性能。  相似文献   

11.
采用780℃亚温淬火和不同温度回火,探究回火温度对40CrMoVNbTi钢组织和力学性能的影响。对淬火不同温度回火40CrMoVNbTi钢的力学性能变化及显微组织和冲击断口断貌进行观察和分析。结果表明,780℃亚温淬火,随回火温度的提高,40CrMoVNbTi钢的强度下降,塑性呈上升趋势,300℃回火冲击吸收能量值最低,出现回火脆性。200℃回火组织为回火马氏体和残留奥氏体,其抗拉强度为2150 MPa,KV2为23.8 J;550~600℃回火组织为回火索氏体,韧性较好,其抗拉强度为1190~1070 MPa,KV2为94~123 J,满足AISI 4140钢的力学性能要求,具有较高的冲击性能。  相似文献   

12.
对马氏体不锈钢0Cr13Ni5Mo焊接接头经过1000℃油淬后,分别进行了600℃,620℃+600℃,400℃回火。通过显微组织分析、拉伸试验、冲击试验和硬度检测对3种焊接接头的组织和力学性能进行了研究。结果表明,3种焊接接头中焊缝组织粗大,硬度最高;焊接接头的韧性低于相应热处理状态下母材的韧性;随着回火温度的降低,韧性下降,强度提高。二次回火比一次回火组织更加细小,强度和韧性更好;620℃+600℃二次回火后焊接接头具有比较理想的综合力学性能。  相似文献   

13.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

14.
采用力学性能测试、显微组织观察、扫描电镜观察,研究回火温度对Q1100超高强钢组织和性能的影响规律。结果表明:试验钢900 ℃保温后水淬再200~300 ℃回火后,为回火板条马氏体组织;在 400 ℃和500 ℃回火后,为回火屈氏体组织;在600 ℃回火后,为回火索氏体组织。试验钢具有较高的回火稳定性,在400~600 ℃回火时,α铁素体仍保持板条马氏体的形状和位向。在200 ℃回火后,小角度晶界含量较多,阻碍微裂纹扩展,韧性较好,随着回火温度的升高,小角度晶界占比逐渐减少,在400 ℃回火后,小角度晶界占比较少,碳化物的析出恶化试验钢的韧性,发生了回火脆性,韧性最差,500 ℃和600 ℃回火后,试验钢的小角度晶界占比较400 ℃相差不明显,但试验钢回复程度较大且600 ℃回火发生部分再结晶,回火软化作用较大,韧性较高。当回火温度为200 ℃时,试验钢具有最佳的综合性能,屈服强度为1164.38 MPa,抗拉强度为1429.70 MPa,断后伸长率为14.66%,硬度为430.27 HV3,标准试样-40 ℃冲击吸收能量为92.30 J。  相似文献   

15.
研究了正火后回火温度对无碳化物贝氏体钢无缝钢管组织和性能的影响。试验结果表明,930 ℃正火后在600 ℃以下回火时,随回火温度的提高,试验材料的抗拉强度有降低的趋势,但降幅不大,强度在973~1012 MPa变化。试验材料的冲击吸收能量在300 ℃达到最大值,为72 J;400 ℃回火时,冲击吸收能量出现最低值,出现无碳化物贝氏体钢的回火脆性;回火温度超过400 ℃时,冲击吸收能量上升;300~350 ℃回火时,伸长率和断面收缩率最高。在400 ℃以下回火时,试验材料的组织由无碳化物贝氏体、块状铁素体和残留奥氏体组成;超过400 ℃回火时,组织为粒状贝氏体及块状铁素体。无碳化物贝氏体钢无缝钢管930 ℃正火,300 ℃回火时具有较佳的综合力学性能。  相似文献   

16.
通过显微组织观察和力学性能检测,分析了42CrMo钢在不同回火温度下微观组织形貌和力学性能的变化。通过三维原子探针(3DAP)技术分析500 ℃回火温度下42CrMo钢中元素分布情况,研究了Cr、Mn、Mo等合金元素对钢性能的影响。结果表明,42CrMo钢水淬后在450 ℃回火时显微组织为回火屈氏体,在500~650 ℃区间回火时显微组织均为回火索氏体,随着回火温度的增加,颗粒状碳化物增多;抗拉强度和规定塑性延伸强度降低,-40 ℃低温冲击性能升高。在500 ℃回火可达到12.9级螺栓力学指标(Rm≥1200 MPa,KV2≥27 J),力学性能最佳,且满足低温环境下螺栓用钢的使用要求。3DAP结果表明,钢中的合金元素通过固溶强化和沉淀强化提高了钢的性能。  相似文献   

17.
采用OM、SEM、TEM、拉伸试验和冲击试验等,研究了600 ℃回火不同时间对690 MPa级高强抗震耐火钢板的力学性能、微观组织及析出行为的影响。结果表明,不同回火时间对耐火钢板的力学性能和微观组织有重要影响。耐火钢板经过600 ℃回火后强度稍有降低,但伸长率增大,屈强比降低,综合力学性能提高,低温冲击吸收能量随回火时间的延长而降低。最优回火保温时间为15 min,此时试验钢板的屈服强度为976 MPa、硬度为396 HV,-40 ℃冲击吸收能量为164 J,其组织由贝氏体+铁素体+少量马氏体构成,在马氏体和铁素体中均存在位错和细小析出相,析出相为富Nb的Nb、Ti复合碳化物,发挥沉淀强化作用;当保温时间延长至60 min后,析出大量细小Nb、Ti和Mo复合碳化物,但此时的沉淀强化作用不能弥补铁素体造成的强度损失,所以在相同温度回火过程中,随着回火时间的延长,抗拉强度和硬度下降。  相似文献   

18.
采用SEM、XRD、TEM和Thermo-Calc软件计算等手段研究了两相区回火温度对0.02C-7Mn钢的组织和性能变化的影响。结果表明,淬火后试验钢组织以淬火马氏体为主,伴有极少量的残留奥氏体;两相区回火后,基体组织以回火马氏体为主,出现逆转变奥氏体,空冷后转变为残留奥氏体。随着回火温度的升高,残留奥氏体的含量逐渐增加,在650 ℃回火后到达峰值为18.78%;与此同时出现了6.57%的ε-马氏体。两相区回火后,试验钢的抗拉强度均有下降,但是屈服强度有不同程度的升高,这归因于回火过程中位错密度的下降以及弥散第二相的析出。另外,ε-马氏体的存在不仅迅速降低了屈服强度,而且还损害了韧性。在600 ℃回火后,试验钢具有优异的综合力学性能(横向:抗拉强度为984 MPa、屈服强度为973 MPa,-40 ℃冲击吸收能量为163 J,纵向:抗拉强度为947 MPa、屈服强度为919 MPa,-40 ℃冲击吸收能量为186 J),满足Q690用钢的力学性能需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号