首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poor mechanical properties of hydroxyapatite (HA) can be enhanced by forming a composite with a bioinert and mechanically strong metal alloy such as Ti-6A1-4V. Biomedical composites composed of titanium alloys and HA can offer concomitant bioactive properties as well as good mechanical strength and toughness. This paper describes an attempt to improve coating mechanical properties by forming a composite composed of HA and Ti-6A1-4V. Several compositions (20, 33, and 80 wt % HA) were prepared. Subsequent examination of the plasma-sprayed coatings revealed alternating HA-rich and titanium-rich lamella microstructures. The HA-rich regions appeared porous as a result of poor interparticle adhesion, with the 80 wt% HA coatings having the highest porosity. Mechanical property analysis showed the 20 wt% HA coating to have the highest storage modulus (∼60 GPa). This coating also had the highest bond strength (≥20 MPa max). The coatings tended to exhibit increased bond strength at thicknesses less than or equal to 60 μm. The excellent bond strength of the Ti-6A1-4V/HA composite is caused by the superior interfacial bond between the Ti-6Al-4V-rich splats and the substrate. The encouraging development of this composite raises the possibility of its use as a bond coat for plasma-sprayed HA on titanium-alloy implants.  相似文献   

2.
Pre-alloyed and plasma spheroidized composite powders were used as the feedstock in the plasma spraying of functionally graded yttria stabilized zirconia (YSZ)/NiCoCrAlY coatings. The ball milling parameters of the composite powders and the plasma spraying parameters for preparing functionally graded materials (FMGs) coatings were optimized to obtain the best performance for the thermal barrier coatings (TBCs). Microstructure, physical, mechanical, and thermal properties of YSZ/NiCoCrAlY FGMs coatings were investigated and compared with those of traditional duplex coatings. Results showed that the advantages of using pre-alloyed composite powders in plasma spraying were to ensure chemical homogeneity and promote uniform density along the graded layers. Microstructure observation showed the gradient distribution of YSZ and NiCoCrAlY phases in the coating, and no clear interface was found between two adjacent different layers. Oxidation occurred during plasma spray and the resultant aluminum oxide combines with YSZ in a wide range of proportions. The bond strength of functionally graded coatings was about twice as high as that of the duplex coatings because of the significant reduction of the residual stresses in the coatings. The thermal cycling resistance of functionally graded coating was much better than that of duplex coating.  相似文献   

3.
钛合金表面激光熔化沉积钛基复合材料涂层的组织及性能   总被引:3,自引:0,他引:3  
通过激光熔化沉积TA15+30%TiC(体积分数)混合粉末,在TA15钛合金表面制备出钛基复合材料涂层,分析了涂层的组织、硬度及界面结合强度。结果表明,激光熔化沉积过程中原始TiC颗粒发生溶解,并在凝固过程中重新析出细小的TiC,TiC有等轴状及枝晶两种形态,涂层中存在部分未熔的TiC颗粒;涂层硬度达HRC 60;涂层与基体界面为完全冶金结合,涂层的界面结合强度大于310 MPa,抗剪切强度为330 MPa;经弯曲及热震试验后,涂层未出现剥落现象,表明涂层与基体具有很好的相容性  相似文献   

4.
目的 研究添加元素Zn含量的变化对涂层的显微组织、孔隙率、硬度及涂层-基体间界面结合强度等的影响规律.方法 采用冷喷涂技术在Q345R板材表面制备性能优良的纯Al和Al-Zn复合涂层,通过扫描电子显微镜对涂层的形貌进行分析,通过维氏显微硬度计对涂层的力学性能进行表征,并揭示涂层与基体间的界面结合机理.结果 冷喷涂纯Al和Al-Zn复合涂层与Q345R钢基体的结合良好,界面处无明显的孔洞及裂纹.随着Zn含量的增加,复合涂层的致密度、硬度逐渐提高;纯Al和Al-20wt.%Zn复合涂层的界面结合强度相当,且失效断裂形式为典型的界面粘结断裂.随着添加元素Zn含量的增加,涂层与基体间的界面结合强度逐渐增大,Al-40wt.%Zn涂层的结合强度为35 MPa,且断裂方式由界面粘着断裂转变为以界面粘着断裂为主、涂层内部粘聚断裂为辅的复合失效模式.结论 以低温固态沉积为特点的冷喷涂技术可有效避免氧化、相变、热裂等高温导致的不利影响,在沉积过程中,随着添加元素Zn含量的增加,对涂层的夯实作用不断加强,提高了涂层的致密性,从而使涂层的力学性能得到改善.  相似文献   

5.
New composite hydroxyapatite/titanium (HA/Ti) coatings were fabricated by plasma spraying on Ti–24Nb–4Zr–7.9Sn alloy from milled precursor powders. The microstructures, mechanical properties and apatite-induction abilities of the coatings were investigated, and the influences of the initial HA/Ti ratios on microstructure and properties were highlighted. XRD, SEM and TEM were used to analyze the microstructures of the coatings. The micro-hardness and elastic modulus were determined by indentation tests and the bond strength was determined by tensile tests. The apatite-induction ability of the coatings was evaluated in simulated body fluid (SBF) with ion concentrations similar to those of human blood plasma. The results showed that the microstructure, mechanical properties and apatite-induction ability were dependent on the HA/Ti ratios of the original powders. The mechanical properties increased, and the apatite-induction ability decreased with increasing Ti content. Various chemical reactions occurred during the preparation of the coatings, including the decomposition of HA, the reaction between HA and Ti and the oxidization of Ti, which resulted in the formation of new phases, such as CaTiO3, Ca3(PO4)2, TiPx and titanium oxides in the different coatings. These new phases play an important role for the mechanical properties and the apatite-induction ability of the coatings.  相似文献   

6.
A new hydrothermal method is proposed, which enables us to prepare thin hydroxyapatite (HA) ceramic coatings on Ti substrates with a curved surface at low temperatures. The method uses double layered capsules in order to produce a suitable hydrothermal condition; the inner capsule encapsulates the coating materials and a Ti substrate, and the outer capsule is subjected to isostatic pressing under the hydrothermal condition. In this study, it is demonstrated that a pure HA ceramic layer with the thickness of 50 μm could be coated to a Ti cylindrical rod at the low temperature as low as 135 °C under the confining pressure of 40 MPa. The HA coating layer had a porous microstructure with the relative density of approximately 60%. Pull-out tests were conducted to obtain an estimate for the adhesion properties of the HA coating prepared by the double capsule method. The shear strength obtained from the pull-out tests was in the range of 4.0–5.5 MPa. It was also shown that the crack propagation occurred within the HA coating layer, not along the HA/Ti interface in the pull-out tests. This observation suggests that the fracture property of the HA/Ti interface was close to or higher than that of the HA ceramics only. It is expected that the low temperature double capsule method may provide a useful method for producing bioactive HA ceramic coatings on curved prostheses surfaces.  相似文献   

7.
To enhance the bonding between hydroxyapatite (HA) coating and titanium alloy substrate, HA/TiO2 composite coatings have been fabricatedvia plasma spraying. Bonding strength evaluation, simulated body fluid tests, and cell culturein vitro were carried out to characterize the composite coatings. The results obtained showed that the addition of TiO2 to HA coating improved the bonding strength of the coating significantly. After being immersed in simulated body fluid (SBF) for a period, the surfaces of HA/TiO2 composite coatings were completely covered by carbonate-containing apatite, which indicated that the coatings possess good bioactivity. Thein vitro cell culture indicated good cytocompatibility for HA/TiO2 composite coatings.  相似文献   

8.
采用磁控溅射法在Ti6Al4V钛合金基体上制备羟基磷灰石(HA)-氧化锆(ZrO2)复合涂层,通过SEM、EDS、XRD和划痕法对50HA-50ZrO2和75HA-25ZrO2(质量分数,%)涂层进行表征,分析HA含量对涂层残余应力的影响。实验结果表明,HA-ZrO2复合涂层的物相为HA、ZrO2和Y2O3,在复合过程中HA部分发生分解,产生TCP和CaO等杂质相;涂层表面呈多孔状,有利于类骨组织的生长,50HA-50ZrO2和75HA-25ZrO2深层的表面粗糙度分别为1.61μm和2.92μm;涂层结合界面为机械结合方式,划痕法测量的50HA-50ZrO2和75HA-25ZrO2深层界面结合强度分别为30N和17.5N,随着HA含量的增加,涂层结合强度呈现下降的趋势;50HA-50ZrO2和75HA-25ZrO2涂层的残余应力分别为(-399.1±3)MPa和(-343.2±20.3)MPa,适当增加HA可以减小涂层的残余应力。  相似文献   

9.
Functionally graded carbon nanotubes/hydroxyapatite (CNTs/HA) composite coatings have been fabricated by laser cladding technique using CNTs/HA composite powders. As the feedstock for laser deposition, CNTs/HA composite powders were prepared by ball-milling different weight ratios (1%, 3% and 5%) of CNTs with HA powders. CNTs/HA composite coatings were fabricated with CNTs/HA composite powders and functionally graded coating was fabricated by sequentially depositing different CNTs/HA composite coatings on pure titanium. The phase composition, microstructure, micro-hardness, bonding strength and in vitro cellular responses of the composite coatings and the functionally graded composite coating were studied. The results show that the crystallinity of CNTs/HA composite coatings increased with increasing amount of CNTs in the powder mixture. The CNTs were dispersed homogeneously in the coatings to form an interconnected web and the cylinder graphic structure of CNTs was not changed after laser irradiation. Compared with pure HA coating, the maximum increase of the micro-hardness of CNTs/HA composite coatings was 46.8% and the micro-hardness of the functionally graded coating increased gradually through the thickness of this coating. Furthermore, the bonding strength of the functionally graded coating was nearly twice higher than that of pure HA coating. The in vitro cellular biocompatibility tests reveal that the functionally graded composite coating has comparable in vitro bioactivity with pure HA coating.  相似文献   

10.
The heat treatment effect on the characteristics and tensile strength of plasma-sprayed alumina, yttria-stabilized zirconia (YSZ), and mixtures of alumina and YSZ coatings on titanium was investigated. The as-sprayed structures of alumina and YSZ coatings consists of a and y alumina phases, and cubic and tetragonal zirconia phases, respectively. The tensile strength of the coatings containing a large amount of YSZ is increased from 25 to 50 MPa by heat treatment at 800 °C. The 60% YSZ-AI2O3 coating showed the highest tensile strength. The tensile strength increase of the YSZ-containing coating by heat treatment is caused by formation of 10 to 100 nm wide microcracks. The interface adhesion strength between the heat-treated titanium substrate and the alumina-containing coating is increased by chemical reaction at the in-terface. Thus, a heat-treated alumina and zirconia mixture coating may be favorable in obtaining high tensile strength due to microcrack formation in the coating and the chemical reaction at the interface. During this work, S. Baba was a graduate student at Kyushu Institute of Technology, Sumitomo Metal Ind. Ltd., Osaka, Japan.  相似文献   

11.
为提高TC4钛合金的耐磨性,利用激光熔覆技术在TC4钛合金表面制备Ni60+50%WC和d22粉末打底+(Ni60+50%WC)两种耐磨复合涂层。采用扫描电子显微镜(SEM)、能谱仪(EDS)以及X射线衍射仪(XRD)来表征涂层的微观结构和物相组成;使用HV-1000显微维氏硬度计、HRS-2M型高速往复摩擦磨损试验机和WDW-100D电子万能试验机来分析涂层的性能。结果表明:两种涂层均由W2C、TiC、Ni17W3、Ni3Ti和TixW1-x相组成,两种涂层不仅与基体呈现出优异的冶金结合,而且组织均匀致密,没有裂纹瑕疵;由于涂层中存在着原位合成的硬质相和细晶强化共同作用使得涂层硬度显著提高,约为TC4基体的2.8倍;两种涂层的摩擦系数(COF)和磨损量都远低于TC4钛合金基体,耐磨性能比基体提高了近17倍;Ni60+50%WC复合涂层和d22粉末打底+(Ni60+50%WC)复合涂层的剪切结合强度分别为188.19 MPa和49.11 MPa。结论:两种涂层均能显著改善TC4钛合金基体表面的硬度和耐磨性能,其中Ni60+50%WC复合涂层在硬度、耐磨性和结合强度等方面表现得更出色。  相似文献   

12.
Ni3Al-hBN composite powders were manufactured by spray drying technology, and then plasma sprayed to form the coatings. The influence of hBN addition amount on the flowability and apparent density of the composite powders, as well as the mechanical and tribological properties of the as-sprayed coatings was evaluated. The results indicate that the spherical powders with uniformly distributed compositions are successfully manufactured by spray drying technology. Both the flowability and apparent density of the Ni3Al-hBN powders, as well as the bond strength and hardness of the composite coatings decrease with the increase of hBN content. Addition of hBN less than 10 wt.% reduces the friction coefficient and brittle fracture of the coatings, which is beneficial to improve the tribological properties of the Ni3Al-hBN composite coatings. However, high hBN addition, damaging the bond in the coating, will deteriorate the wear resistance of the coating. The Ni3Al-hBN composite coating containing 10%hBN shows the optimum properties combining strength and hardness with tribological properties.  相似文献   

13.
The oscillatory micromovements at the interface between the implant and the bone induce fretting wear and sometimes, fatigue cracks, causing early failure of the joint prosthesis. Hydroxyapatite films were formed using a sol–gel method from an organic precursor solution. The average film thickness was found to be 1.0 μm. Composite coatings containing HA doped with ZrO2 were also formed. Hydroxyapatite (HA) and composite films of HA and ZrO2 formed on commercial titanium substrates using an organic precursor solution by sol–gel route, were tested for fretting wear using a ball-on-flat fretting apparatus. The moderately lower values of the coefficient of friction (0.4–0.5) and morphology of the wear pits for considerably long cycles of fretting indicate strong bonding of the HA coating to the titanium surface. The interface shear strength of a thin hydroxyapatite film on commercial purity titanium has been evaluated using a substrate straining method. The maximum interfacial strength was about 570 and 678 MPa, for the pure HA and composite films, respectively, on the highly polished surface. However, the maximum interfacial strength was found to be about 263 MPa on the oxidized surface.  相似文献   

14.
This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45° to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa.  相似文献   

15.
利用宽束激光在Q550钢表面制备Ni60/WC复合熔覆层,分析熔覆层显微组织、元素分布和物相组成,通过剪切试验定量表征熔覆层/基体界面结合强度,并对断口形貌进行分析阐述界面断裂机制.结果表明,熔覆层中WC颗粒部分溶解,形成了具有复杂结构的析出相,内核为M23C6碳化物(M代表Cr,W,Fe),外部为M23C6复合碳化物和γ-Ni共晶.平面晶和树枝晶在界面上生长,形成牢固冶金结合.激光功率大于2.8 kW时,熔覆层抗剪强度达到279.8 MPa以上,超过母材的75%.断口分析表明,熔覆层界面具有脆性-韧性混合断裂特征,低功率下WC颗粒在界面上沉积,削弱了界面结合强度.  相似文献   

16.
为了获得具有生物力学性能的陶瓷膜层材料并满足临床医学上的需要。以Ti6Al4V钛合金为基体材料,通过微弧氧化工艺方法在电解液中制备氧化锆和羟基磷灰石复合陶瓷膜层材料。利用能谱分析仪和扫描电镜分析膜层结构特点。建立并改进了多孔性膜层力学性能数学模型,利用理论计算与实验测试相结合的方法对膜层相关生物力学性能进行了研究。实验结果表明,氧化锆/羟基磷灰石医用钛合金复合陶瓷能够取得比单一的羟基磷灰石陶瓷膜层更好的生物力学性能。生物陶瓷力学性能与孔隙率及生成的新相有关,通过实验与理论模型相结合的方法能够更好的对生物陶瓷膜层力学性能进行研究,所建立数学模型科学合理,具有一定理论意义。  相似文献   

17.
The mechanical properties and adhesion behaviour of sol-gel derived hydroxyapatite (HA) nanocoatings on commercially pure (cp) titanium (Ti) and Ti6Al4V alloy have been determined and related to anodising treatment. The surface roughness, wetting and coating characteristics were examined using profilometry, contact angle, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Nano-indentation was used to determine the Young's modulus and hardness of the coatings, while microtensile tests were used to introduce controlled strains in the coatings through the cp Ti and TiAl6V4 alloy substrates, from which the strength, fracture toughness and adhesion behaviour could be ascertained based on multiple cracking and delamination events. The toughness of the HA coatings is found to be slightly lower to that of equivalent bulk pure HA ceramics. The substrate and the anodized layer thickness have the most influence on the interfacial adhesion of HA, with nanocoatings on Ti6Al4V exhibiting superior interfacial bonding in comparison to cp Ti.  相似文献   

18.
Thermal barrier coatings are widely used in aerospace industries to protect exterior surfaces from harsh environments. In this study, functionally graded materials (FGMs) were investigated with the aim to optimize their high temperature resistance and strength characteristics. NiCrAlY bond coats were deposited on Inconel-617 superalloy substrate specimens by the low vacuum plasma spraying technique. Functionally graded Ni-yttria-stabilized zirconia (YSZ) coatings with gradually varying amounts of YSZ (20%-100%) were fabricated from composite powders by vacuum plasma spraying. Heat shield performance tests were conducted using a high- temperature plasma torch. The temperature distributions were measured using thermocouples at the interfaces of the FGM layers during the tests. A model for predicting the temperature at the bond coating–substrate interface was established. The temperature distributions simulated using the finite element method agreed well with the experimental results.  相似文献   

19.
Hydroxyapatite coatings were plasma sprayed on the Ti6A14V substrate with and without an intermediate ZrO2 layer; meanwhile the temperatures of substrates were varied at 90, 140, and 200 °C. The coatings were subjected to the standard adhesion test per ASTM C633-79. The purpose of the investigation was to study the effects of those processing variables on the bonding strength and failure behavior of the system. It is found that the bonding strengths of HA/ZrO2 and HA coatings generally decrease with increasing substrate temperature, except for the HA/ZrO2 coating deposited at 200 °C. The rationale of the results is attributed to the residual stress reported in the literature. Introducing ZrO2 bond coat is found to significantly promote the bonding strength of HA coating. The possible strengthening mechanism is the rougher surface of ZrO2 bond coat and the higher toughness of ZrO2, which provide the mechanical strengthening effects. The slightly denser HA in 200 °C deposited HA coating cannot explain the high bonding strength of the HA/ZrO2 coating, nor the mechanical strengthening effect of ZrO2 intermediate layer should apply. It is believed that a stronger diffusion bonding is formed at the interface of HA and ZrO2, which increases the bonding between them chemically. The bonding strengths of HA/ZrO2 and HA coatings are correlated with the area fraction of adhesive failure of the coatings. The correlation explains the findings in this study.  相似文献   

20.
Al-Al2O3 composite coatings were produced on AZ91D magnesium alloy substrates using kinetic metallization (KM), which is a special type of cold spray using a convergent barrel nozzle to attain sonic velocity. The effect of the volume fraction of Al2O3 particles and KM spray temperatures on the microstructure, hardness of the composite coatings, the deposition efficiency, and the bond strength between the coating and substrate was studied. Results show that addition of Al2O3 particles not only significantly improves the density of the coating, but also enhances the deposition efficiency to an optimum value. The bond strength of the composite coatings with the substrate was found to be much stronger than the coating itself, measured using a specially designed lug shear method. Furthermore, based on bond strength data and SEM analysis, higher Al2O3 content resulted in a failure mode transition from adhesive failure to cohesive failure. This is considered a result of a competition between the strengthening of the ceramic reinforcing particles at the coating/substrate interface, and the weakening of coating cohesive strength due to an increase in the proportion of weaker Al-Al2O3 bonds compared with stronger Al-Al bonds. Characterisation of the composite coating in terms of hardness, porosity and microstructure was also conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号