首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在保护气氛下采用不同的温度烧结Cu-MoS2复合材料,对所制备的材料进行成分分析,并测量了抗弯强度,硬度,电阻率等性能.结果表明:在烧结过程中Cu和MoS2发生了反应,产物为Cu1.83Mo3S4;随烧结温度的升高,材料的抗弯强度及硬度都有了显著提高,电阻率在烧结温度为750℃时最低.  相似文献   

2.
在保护气氛下采用不同的温度烧结Cu-MoS2复合材料,对所制备的材料进行成分分析,并测量了抗弯强度,硬度,电阻率等性能。结果表明:在烧结过程中Cu和MoS2发生了反应,产物为Cu1.83Mo3S4;随烧结温度的升高,材料的抗弯强度及硬度都有了显著提高,电阻率在烧结温度为750℃时最低。  相似文献   

3.
采用粉末冶金技术研制了一种新型无银触头材料,该材料的综合性能,如密度、硬度、电阻率、灭弧特性及温度特性与银氧化物触头材料接近.当新型无银触头材料的相对密度与银氧化物触头材料的相对密度相同时,两者电阻率相当,而其硬度高于银氧化物触头材料的;温升和通断能力试验结果表明:所研制的无银触头在许多应用领域中,如在电力机车上可替代银氧化物触头材料.实验表明:该材料的相对密度大于98%,硬度(HB)大于950 MPa,电阻率小于2.78 μΩ·cm.  相似文献   

4.
以碳纳米管(CNTs)、碳化硅(SiC)粉体、锌(Zn)粉和CuSO_4·5H_2O为主要原料,用化学镀的方法制备CNTs /Cu复合粉体,再采用非均相沉淀法制备CNTs/SiC/Cu复合粉体.在750 ℃、100 MPa的制度下进行真空热压烧结后制得CNTs/SiC/Cu复合材料,其中Cu的含量(体积分数,下同)为70%,CNTs的含量(体积分数, 下同)分别为0,3%,5%,8%,12%.利用XRD、SEM分析样品的物相组成和显微结构;利用阿基米德排水法、显微硬度计、三点弯曲法测试了复合材料的密度、显微硬度和抗弯强度.结果表明,随着碳纳米管含量的增加,CNTs/SiC/Cu复合材料的密度、显微硬度和抗弯强度等性能发生相应变化,其中,抗弯强度呈现逐渐升高趋势.与未添加碳纳米管的30SiC/70Cu复合材料相比,添加12%CNTs的12CNTs/18SiC/70Cu 样品,抗弯强度提高了21.45 MPa.  相似文献   

5.
采用机械合金化结合粉末冶金技术制备W-20Cu(vol%)复合材料.利用扫描电镜和金相显微镜对不同球磨时间的W-20Cu复合材料显微组织进行表征,并对材料的各项物理性能进行测试.结果表明,随着球磨时间的延长,W-20Cu烧结体的组织越来越均匀,Cu相分布也越来越均匀.W-20Cu烧结体密度、收缩率、硬度、抗弯强度随球磨时间的延长而增大;球磨20h的W-20Cu复合粉烧结体热导率达到峰值(130.61 Wm-1K-1),继续球磨,热导率减小.综合考虑所有研究结果,通过机械合金化所制备的W-Cu复合粉体可以获得具有优异综合物理性能的W-20Cu复合材料.  相似文献   

6.
采用真空热压烧结工艺制备W(50)/Cu-Al2O3复合材料,观察了其显微组织,测试了其致密度、硬度、抗弯强度和导电率。结果表明:W(50)/Cu-Al2O3复合材料组织致密;致密度和硬度优于Cu-50%W,致密度可达99.8%,显微硬度达135 HV。而导电率为46%IACS,略低于W-50%Cu复合材料。抗弯强度为291.3 MPa,弥散铜钨合金室温弯曲断裂主要以弥散Cu相的撕裂为主,伴随有W-Cu界面的分离和部分W晶粒的解理断裂。  相似文献   

7.
碳纳米管-银复合材料的制备工艺和电导率   总被引:4,自引:1,他引:3  
采用粉末冶金方法制备碳纳米管-银复合材料,研究了制备工艺、碳纳米管含量对碳纳米管-银基复合材料密度、硬度、抗弯强度、电导率的影响.结果表明:采用复压烧结,烧结温度为700℃时,复合材料的性能较好;碳纳米管和银的弱界面结合,使得碳纳米管对复合材料的强化效果不明显;当碳纳米管的体积含量大于10%时,碳纳米管在晶界上发生偏聚,碳纳米管-银界面对电子产生散射,导致复合材料的电阻率迅速增加.  相似文献   

8.
采用真空热压烧结工艺制备了TiC10/Cu-Al2O3复合材料,并测试了性能和显微组织。在冷等静压机上对烧结态试样进行了冷等静压试验。结果表明:该复合材料烧结态的组织较为致密,致密度为98.53%;显微硬度为158 HV,电导率为48.7%IACS。经冷等静压后,材料的致密度为98.76%,显微硬度为161 HV,电导率为50.8%IACS,综合性能均有所提高。  相似文献   

9.
研究了氮气气氛无压烧结、气氛压力烧结和气氛热压烧结的制备方法对AlN/BN复合材料致密度的影响,提出了气氛热压烧结法为最佳制备方法.采用热压烧结法制备出高导热可加工的AlN/BN复合材料,并研究了热压烧结中不同BN含量对复合材料的致密度、热导率、强度、硬度等性能的影响,最后结合显微结构图片分析了复合材料在加工过程中裂纹的传播过程,从而解释了材料的可加工性得以提高的机理.  相似文献   

10.
原料Cu,Nb和石墨粉末置于高能振动盘式研磨仪,在氩气气氛中研磨7 h制备Cu-5%NbC(体积分数)粉末。采用两步压制法及在真空900℃烧结1h条件下制得Cu-NbC功能梯度材料和复合材料样品,研究样品的显微组织、物理性能和力学性能。场发射扫描电镜、能量色散X射线和X射线衍射结果表明,样品经烧结处理后,晶粒尺寸为18~27 nm的纳米结构基体中含有大小为42 nm的纳米颗粒增强相,证实了所制复合材料的高温热稳定性。Cu-15%NbC复合材料样品的硬度是纯Cu样品硬度的5倍。相对于纯Cu样品,磨损后Cu-15%NbC复合材料样品的体积磨损量减小,且电导率降低至36.68%IACS。相对于复合表面中的复合材料样品,Cu/NbC功能梯度材料样品在具有与复合材料相同的硬度和磨损性能的条件下,显示出75.83%IACS的较高电导率。因此,具有良好力学性能和电学性能的Cu/NbC功能梯度材料将成为很好的电触头材料。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases. As a key feature of microstructure, the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys. This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation. We found that the ferrite grain tends to grow into an elongated plate-like shape, independent of its initial confi guration. The fi nal shape of the ferrite is closely related to the misfi t between the two phases, with the longest direction and the broad facet of the plate being, respectively, consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC) method. The strain energy calculation in the framework of Eshelby's inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable. It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.  相似文献   

16.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

17.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

18.
A 17 vol% SiCp/Al–Mg–Si–Cu composite plate with a thickness of 3 mm was successfully friction stir welded(FSWed) at a very high welding speed of 2000 mm/min for the first time. Microstructural observation indicated that the coarsening of the precipitates was greatly inhibited in the heat-affected zone of the FSW joint at high welding speed, due to the significantly reduced peak temperature and duration at high temperature. Therefore, prominent enhancement of the hardness was achieved at the lowest hardness zone of the FSW joint at this high welding speed, which was similar to that of the nugget zone. Furthermore, the ultimate tensile strength of the joint was as high as 369 MPa, which was much higher than that obtained at low welding speed of 100 mm/min(298 MPa). This study provides an effective method to weld aluminum matrix composite with superior quality and high welding efficiency.  相似文献   

19.
On the basis of energy and shape method for the determination of the valence bond (VB) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole temperature range of 0-1943K. The outer shell electronic distribution of Ti is e_c~(2.9907) · (s_c~(0.4980) d_c~(2.4927)) ef1.0093 in crystal. The temperature dependences of the VB structures of hcp and bcc phases are the same. The VB structures of hcp and bcc phases monotonically increase or decrease with the increase in temperature, but show discontinuous changes at the phase-transformation temperature 1155K.  相似文献   

20.
Fatigue damage increases with the applied loading cycles in a cumulative manner and the material deteriorates with the corrosion time. A cumulative fatigue damage rule under the alternative of corrosion or cyclic loading was proposed. The specimens of aluminum alloy LY12-CZ soaked in corrosive liquid for different times were tested under the constant amplitude cyclic loading to obtain S-N curves. The test was carried out to verify the proposed cumulative fatigue damage rule under the different combinations among corrosion time, loading level, and the cycle numbers. It was shown that the predicted residual fatigue lives showed a good agreement with the experimental results and the proposed rule was simple and can be easily adopted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号