首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bi2O3与Sb2O3掺杂对ZnO力学性能的影响   总被引:1,自引:0,他引:1  
设计、制备了三个系列(不同Bi2O3与Sb2O3掺杂浓度)的ZnO基复合材料.力学性能测试的结果表明,Bi含量(2%,原子分数)保持不变,随Sb含量(在合适的剂量范围内)的增大,由于基质ZnO晶粒减小,陶瓷致密度增大,所得材料的模量、抗弯强度以及断裂韧性均增大;Sb含量(3%,原子分数)保持不变,随Bi含量的增大,由于基质ZnO晶粒增大、陶瓷致密度减小,所得材料的模量、抗弯强度以及断裂韧性均减小.在设计组成范围内材料的最佳力学性能约为:弹性模量114 GPa,弯曲模量115GPa,抗弯强度 120 MPa,断裂韧性1.87 MPa·m1/2.  相似文献   

2.
彭志坚  杨义勇  王成彪  付志强 《金属学报》2008,44(10):1265-1270
设计、制备了三个系列(不同Bi2O3与Sb2O3掺杂浓度)的ZnO基复合材料. 力学性能测试的结果表明, Bi含量(2%, 原子分数)保持不变, 随Sb含量(在合适的剂量范围内)的增大,由于基质ZnO晶粒减小, 陶瓷致密度增大, 所得材料的模量、抗弯强度以及断裂韧性均增大; Sb含量(3%, 原子分数)保持不变, 随Bi含量的增大, 由于基质ZnO晶粒增大、陶瓷致密度减小, 所得材料的模量、抗弯强度以及断裂韧性均减小.在设计组成范围内材料的最佳力学性能约为: 弹性模量114 GPa, 弯曲模量115 GPa, 抗弯强度120 MPa, 断裂韧性1.87 MPa×1/2.  相似文献   

3.
短碳纤维增强羟基磷灰石生物材料的制备与性能   总被引:1,自引:0,他引:1  
以短碳纤维(Cf)为增强体,采用湿法搅拌均化和自组装合成工艺使短碳纤维均匀分散于反应生成的羟基磷灰石(HA)粉体中,30 MPa下将复合粉体压制成型,并于1250℃氮气保护气氛常压烧结制备了短碳纤维增强羟基磷灰石生物复合材料(Cf/HA).为提高复合材料的界面结合,低温氧化法对碳纤维进行表面处理.采用IR,SEM技术研究短碳纤维处理前后的表面状态;SEM观察复合粉体的分散效果及复合陶瓷的断口形貌;三点弯曲法测其抗弯强度;单边切口梁法测其断裂韧性.实验结果表明碳纤维的表面处理对力学性能有很大影响,可大大提高复合材料界面结合强度,Cf添加量为0.5%(质量分数)时,增强效果最为理想,最大抗弯强度为67.70 MPa,断裂韧性达1.18 MPa.m1/2,比Cf未氧化处理的复合材料分别提高近20%和18%.研究表明湿法搅拌均化和自组装合成工艺是一种行之有效的均化技术,具有最小的纤维损伤度、高的碳纤维体积分数以及操作便利等优点,常压下烧结制备的短Cf/HA复合材料是一种很有发展前途的骨替代植入材料.  相似文献   

4.
采用真空热压工艺制备了添加纳米ZrO2和微米WC的Ti(C,N)基纳米复合金属陶瓷材料,并研究了材料的力学性能与微观结构。结果表明:在纳米ZrO2添加量为5%、微米WC添加量为9.6%(质量分数,下同)时,Ti(C,N)基纳米复合金属陶瓷材料的综合力学性能较好,抗弯强度为1014MPa,断裂韧性为7.25MPa·m1/2,硬度为15.57GPa,其抗弯强度和断裂韧性比未添加纳米ZrO2与微米WC的Ti(C,N)基金属陶瓷材料分别提高了3.5%和18.1%。材料断裂模式为以穿晶断裂为主的穿晶/沿晶断裂混合模式。"晶内型"纳米结构弥散增韧、纳米ZrO2相变增韧以及裂纹桥联、裂纹偏转是其主要的增韧补强机理。  相似文献   

5.
采用磁控溅射法在Ti6Al4V钛合金基体上制备羟基磷灰石(HA)-氧化锆(ZrO2)复合涂层,通过SEM、EDS、XRD和划痕法对50HA-50ZrO2和75HA-25ZrO2(质量分数,%)涂层进行表征,分析HA含量对涂层残余应力的影响。实验结果表明,HA-ZrO2复合涂层的物相为HA、ZrO2和Y2O3,在复合过程中HA部分发生分解,产生TCP和CaO等杂质相;涂层表面呈多孔状,有利于类骨组织的生长,50HA-50ZrO2和75HA-25ZrO2深层的表面粗糙度分别为1.61μm和2.92μm;涂层结合界面为机械结合方式,划痕法测量的50HA-50ZrO2和75HA-25ZrO2深层界面结合强度分别为30N和17.5N,随着HA含量的增加,涂层结合强度呈现下降的趋势;50HA-50ZrO2和75HA-25ZrO2涂层的残余应力分别为(-399.1±3)MPa和(-343.2±20.3)MPa,适当增加HA可以减小涂层的残余应力。  相似文献   

6.
采用非晶晶化法制备了Si-Al-Zr-O系氧化锆增韧莫来石(ZTM)微纳米复相陶瓷.分析了不同热处理温度和氧化锆含量对材料微观结构及其力学性能的影响.锆含量为15%(质量分数)的样品在1150℃热处理后能得到较好的力学性能,断裂韧性和抗弯强度分别达到了5.13 MPa·m1/2,520 MPa.比用传统方法制各的ZTM陶瓷性能提高约40%.  相似文献   

7.
Al2O3/ZrO2(Y2O3)复合材料断裂过程中的相变及力学性能   总被引:6,自引:0,他引:6  
用真空烧结方法制备了Al2O3/ZrO2(Y2O3)复合材料,分析了ZrO2(3Y)和ZrO2(2Y)含量对Al2O3基陶瓷抗弯强度、断裂韧性的影响.用XRD定量分析了含摩尔分数2%与3%Y2O3的ZrO2(2Y)与ZrO2(BY)在断裂过程中四方相转变成单斜相的相变量,用以阐明增韧机制.结果表明,在ZrO2含量为15%(体积分数)时,Al2O3/ZrO2(3Y)和Al2O3/ZrO2(2Y)复合材料的抗弯强度、断裂韧性分别达到825MPa,7.8MPa·m1/2和738MPa,6.7MPa·m1/2,两者的性能差异主要来自不同的增韧机制.  相似文献   

8.
以磷片石墨Cfg,SiC,B4C和TiO2为原料,热压合成C-SiC-B4C-TiB2复合材料,研究不同Cfg含量和热压温度对复合材料显微组织和力学性能的影响规律.结果表明烧结过程中TiO2与B4C反应原位生成TiB2;复合材料的密度和抗弯强度随着热压温度的升高而增加,却随着Cfg含量的增加而降低,随着热压温度的升高和Cfg含量的增加,复合材料的断裂韧性则提高;在2 000 ℃,25 MPa下热压时,Cfg含量为20%(质量分数)的复合材料其体积密度为2.81 g/cm3,抗弯强度为236.7 MPa,断裂韧性为5.3 Mpa·m1/2,Cfg含量为65%含量的复合材料的体积密度为2.42 g/cm3、抗弯强度为103.6 MPa、断裂韧性为8.1 Mpa·m1/2;复合材料的致密化程度和陶瓷晶粒随热压温度的升高而增大,复合材料中Cfg层状分布结构随Cfg含量的增加更加明显;复合材料中Cfg弱界面分层诱导韧化作用及第二相TiB2和陶瓷基体热膨胀系数不匹配所产生的残余应力导致的裂纹偏转作用是复合材料断裂韧性提高的主要原因.  相似文献   

9.
PSZ(3Y)含量对Al2O3陶瓷力学性能的影响   总被引:4,自引:0,他引:4  
对部分稳定ZrO2(简称PSZ(3Y))含量与Al2O3基陶瓷烧结致密化及力学性能的关系进行了测试,用X射线衍射定量相分析计算了m-ZrO2和t-ZrO2相在断裂前后相含量的变化.结果表明当Al2O3中添加15%(体积分数)PSZ(3Y)时,1550℃真空烧结后Al2O3基复合陶瓷的抗弯强度达到884 MPa,断裂韧性达到8.2 MPa@m1/2.PSZ(3Y)的相变增韧提高了 Al2O3/PSZ(3Y)复合陶瓷材料的抗弯强度和断裂韧性.  相似文献   

10.
采用化学共沉淀法合成石墨烯(rGO)/羟基磷灰石(HA)粉末,并通过微波烧结制备rGO/HA复合材料。采用XRD、场发射扫描电镜、数显维氏硬度计和万能试验机对其组织和力学性能进行分析和测定,探讨烧结工艺对复合材料显微硬度、断裂韧性和抗弯强度的影响。结果表明:微波烧结较常规烧结可以降低烧结温度,缩短保温时间,随烧结温度提高和保温时间的增加,rGO/HA复合材料的显微硬度、断裂韧性和抗压强度均呈先增大后减小。相比于纯HA,rGO/HA复合材料显微硬度、断裂韧性和抗弯强度分别提高7.16%、31.59%和76.2%。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases. As a key feature of microstructure, the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys. This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation. We found that the ferrite grain tends to grow into an elongated plate-like shape, independent of its initial confi guration. The fi nal shape of the ferrite is closely related to the misfi t between the two phases, with the longest direction and the broad facet of the plate being, respectively, consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC) method. The strain energy calculation in the framework of Eshelby's inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable. It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.  相似文献   

16.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

17.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

18.
A 17 vol% SiCp/Al–Mg–Si–Cu composite plate with a thickness of 3 mm was successfully friction stir welded(FSWed) at a very high welding speed of 2000 mm/min for the first time. Microstructural observation indicated that the coarsening of the precipitates was greatly inhibited in the heat-affected zone of the FSW joint at high welding speed, due to the significantly reduced peak temperature and duration at high temperature. Therefore, prominent enhancement of the hardness was achieved at the lowest hardness zone of the FSW joint at this high welding speed, which was similar to that of the nugget zone. Furthermore, the ultimate tensile strength of the joint was as high as 369 MPa, which was much higher than that obtained at low welding speed of 100 mm/min(298 MPa). This study provides an effective method to weld aluminum matrix composite with superior quality and high welding efficiency.  相似文献   

19.
On the basis of energy and shape method for the determination of the valence bond (VB) structures of crystal, the valence bond structure of titanium is redetermined at room temperature and calculated in the whole temperature range of 0-1943K. The outer shell electronic distribution of Ti is e_c~(2.9907) · (s_c~(0.4980) d_c~(2.4927)) ef1.0093 in crystal. The temperature dependences of the VB structures of hcp and bcc phases are the same. The VB structures of hcp and bcc phases monotonically increase or decrease with the increase in temperature, but show discontinuous changes at the phase-transformation temperature 1155K.  相似文献   

20.
Fatigue damage increases with the applied loading cycles in a cumulative manner and the material deteriorates with the corrosion time. A cumulative fatigue damage rule under the alternative of corrosion or cyclic loading was proposed. The specimens of aluminum alloy LY12-CZ soaked in corrosive liquid for different times were tested under the constant amplitude cyclic loading to obtain S-N curves. The test was carried out to verify the proposed cumulative fatigue damage rule under the different combinations among corrosion time, loading level, and the cycle numbers. It was shown that the predicted residual fatigue lives showed a good agreement with the experimental results and the proposed rule was simple and can be easily adopted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号