首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Airborne silicate pollutants in flight corridors pose a serious threat to aviation safety whose severity is directly linked to the wettability of molten silicates on thermal barrier coatings(TBCs)at high temperatures(1200–2000℃).Despite its importance,the wettability of silicate melt on TBCs has not been well investigated.In particular,the surface morphology characteristics of TBCs can be expected to have a first-order effect on the wettability of silicate melt on such TBCs.Here,a series of atmospheric plasma spray(APS)yttria-stabilized zirconia(YSZ)TBCs with varying surface roughness were generated through the application of mechanical polishing.The metastable nonwetting behavior of three representative types of airborne silicate ash(volcanic ash,fly ash and a synthetic calcium–magnesium–aluminum–silicates(CMAS)powder)on these TBCs with varying surface roughness was investigated.It was observed that the smoother the surface of TBCs was,the larger the contact angle was with the molten silicate melts,and consequently,the smaller the area of damage was on the TBCs.Thus,the reduction in TBCs surface roughness(here via mechanical polishing)led to an improvement in the wetting and spreading resistance of TBCs to silicate melts at high temperature.In support of these observations and conclusions,the surface morphology of the TBC(both before and after polishing)had been characterized,and the mechanism of the surface roughness-dependence of wettability had been discussed.These results should contribute to reducing the deposition rate of silicate melt on TBCs,thus extending the lifetime of turbine blades and reducing maintenance costs.  相似文献   

2.
In order to reduce the cost of the austenitic stainless steels(ASSs),the expensive austenite former(nickel) is often substituted by manganese.However,manganese is generally seen to have a detrimental effect on the corrosion resistance.In the present study,the feasibility of laser surface modification of a lean-alloyed ASS(FeCrMn) for enhancing pitting corrosion resistance was investigated.Laser surface modification of FeCrMn was successfully achieved by a 2.3 kW high power diode laser(HPDL).Cyclic polarization tests for FeCrMn after laser surface modification in 3.5% NaCl solution at 25 ℃ were performed by using a potentiostat.The pitting resistance of the laser-modified specimens was found to be significantly improved as reflected by the noble shift in pitting potential.This could be attributed to redistribution of manganese sulphide leading to a more homogenous and refined microstructure.Pitting corrosion resistance of the laser-treated FeCrMn followed by subsequent citric acid passivation was found to be further improved as reflected by the noble shift in pitting potential to 0.18 V.  相似文献   

3.
The Ti-20Zr-6.5Al-4V(T20Z,wt%) alloy surface was treated by the process of laser surface nitriding.The evolution of microstructures and microhardness has been investigated by changing the laser power parameter from 120 to 240 W.All laser-treated T20Z samples show two regions with distinctly different microstructural features,as compared with the untreated substrate:dense TiN dendrites and(α+β)-Ti(remelting zone,RMZ),nanoscale α laths doped with part of p phase(heat-affected zone,HAZ).The formation of TiN dendrites can be analyzed by a series of complex reactions during the process of melting and solidification.The increase in laser power results in the increase in content of TiN dendrite which is mainly due to the increase in energy input.In HAZ,the self-quenching effect leads to the formation of nanoscale a laths and the residue of β phase.Microhardness profile of different regions was measured from the surface to the interior,and the highest microhardness was obtained(~HV 916.8) in the RMZ,as the laser power was set to 240 W.In the present study,we explained various microstructural characteristics induced by laser surface nitriding treatment.  相似文献   

4.
The hot deformation behavior of Ti22A125 Nb was investigated by hot compression test.The flow stressstrain curves can be divided into two types:conventional dynamic recrystallization(DRX) and discontinuous DRX.The different softening mechanism and micro structure observation of conventional DRX and discontinuous DRX were analyzed.The processing map(PM) of Ti22A125 Nb was built to predict the safe deformation region.The optimal low strain rate domain(DOM I) with high power dissipation efficiency indicates the complete DRX.Additionally,in the high strain rate and low-temperature domain(DOM Ⅲ),the power dissipation efficiency is low and some adiabatic shear bands and glide bands are observed,which are unsafe and should be avoided.Finally,the DRX map was established.In DOM I,it reveals low dislocation density and high DRX content,which is in agreement with PM.  相似文献   

5.
The mixing technology of laser and heated nitrogen was applied to improve the surface hardness of titanium alloy (TC4). The samples were nitrided with laser power density 0f 6.5×105W·cm-2, the scanning speed various from 100 to 500mm · mm-1. The nitrogen gas was pre-heated to 300℃ to accelerate the nitriding process. Some interested samples were tested with XRD method (X-ray diffraction) to analyze the composition of nitrides, and the surface hardness of HV was measured. The results show that TiN and Ti2N were formed on the surface of Ti alloy with proper nitriding parameters, but TiN is the main composition. The surface hardness increased by three times, which is from the original value of 269 to 794kg· mm -2. The mechanism of the mixing technology is considered mainly of the activation of nitrogen by laser power and the pre-heated process which accelerated the nitriding process. The nitridation process can be considered as six steps given in detail. The result by analyzing the mechanism of improving the surface property of TiAl alloy shows the improvement of surface property due to two factors: the first reason is the result of laser annealing, and the second one is the formation of TiN.  相似文献   

6.
An experimental setup of acquiring the coaxial visual image of the molten pool and keyhole in high power Nd:YAG laser welding is introduced in this paper. It is one of the most difficult problems in acquiring coaxial image that the coaxial imaging signal of molten pool and keyhole must be separated from the laser beam with high power. This problem was resolved by designing a dichroitic spectroscope. The characteristics of imaging signal were analyzed and the coaxial image of molten pool and keyhole was acquired. A smoothing filter and a homomorphic filter were designed to remove the low frequency noise and to enhance the image according to the characteristics of imaging signal. At last, edges of molten pool and keyhole were detected and extracted based on image segmentation with threshold.  相似文献   

7.
An explanation of the redistribution of impurity atoms such as Al, Si, Mn and Cu in purenickel during low speed laser melting is made by one-dimensional analysis model for heattransfer. The solid-liquid interface solute redistribution seems to be the principal cause thatmakes the impurity atoms redistribute in the depth direction. The diffusion of impurity atomsfrom low to high temperature zones and their surface selective evaporation are believed to benoticeably contributed to the redistribution.  相似文献   

8.
In this work,the weldability of the alloy Al-Mg-Mn-Zr-Er with high power Nd:YAG laser has been studied.Samples were subjected to three different welding heat inputs to obtain various weld beads.The main objective of the present work has been to investigate the change of microstructure and microhardness at the Al-Mg-Mn-Zr-Er laser weld beads.Results showed that the top width of the bead was larger at the higher laser power.Grain structure refinement was found in welded metal,especially at higher laser power.It was also verified that the microhardness of weld bead was raised with the decrease of laser power,due to the microstructure refinement at the condition of lower laser power.  相似文献   

9.
The technology of length-alterable line-scanning laser sintering was introduced. Based on the research of laser heating property, powder thermal physics parameters and laser sintering process, a numerical model of the temperature field during length-alterable line-scanning and laser sintering of polymer-coated molybdenum powder was presented. Finite element method (FEM) was used to simulate the temperature field during laser sintering process. In order to verify the simulated results, a measuring system was developed to study the laser sintering temperature field. Infrared meter was introduced to measure the surface temperature of sintering powder; the temperature of its inside part was measured by thermocouple. The measured results were compared with the numerical simulation results; the conformity between them is good and the relative error is less than 5%.  相似文献   

10.
Nanostructured zirconia top coat was deposited by air plasma spray and NiCoCrAlTaY bond coat was deposited on Ni substrate by low pressure plasma spray.Nanostructured and conventional thermal barrier coatings were heat-treated at temperature varying from 1050 to 1 250oC for 2-20 h.The results show that obvious grain growth was found in both nanostructured and conventional thermal barrier coatings(TBCs)after high temperature heat treatment.Monoclinic/tetragonal phases were transformed into cubic phase in the agglomerated nano-powder after calcination.The cubic phase content increased with increasing calcination temperature.Calcination of the powder made the yttria distributed on the surface of the nanocrystalline particles dissolve in zirconia when grains grew.Different from the phase constituent of the as-sprayed conventional TBC which consisted of diffusionlesstransformed tetragonal,the as-sprayed nanostructured TBC consisted of cubic phase.  相似文献   

11.
Laser Flash is considered the standard technique for measuring the thermal diffusivity of solids. The interaction between TBC and the laser energy is studied because very low thermal effusivity and thermal diffusivity of TBC can produce very high temperature increase on the surface and temperature gradient within the sample. In such a case, microstructural modifications of TBC can be generated. In this work, such phenomena are studied experimentally on free standing TBC samples.  相似文献   

12.
This research aims to develop advanced thermal plasma spraying technology for the next-generation thermal barrier coatings (TBCs) with a high power hybrid plasma spraying system. By using thermal plasma physical vapor deposition (TP-PVD), various functional structured yttria-stabilized zirconia (YSZ) coatings were deposited. Parameters, such as powder feeding rate, hydrogen gas concentration, and total mass flow rate of the plasma gas, were optimized, and their influences on the evaporation of YSZ powder were investigated. Ultrafast deposition of a thick coating was achieved at a rate of over 150 μm/min. The deposited porous coating has a low thermal conductivity of 0.7W/mK and the dense coating with interlaced t′ domains possesses a high nanohardness of 27.85 GPa and a high reflectance. These characteristics show that the TP-PVD technique is a very valuable process for manufacturing novel TBCs.  相似文献   

13.
Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may be encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser-simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8% Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m K to 1.15, 1.19, and 1.5 W/m K after 30 h of testing at surface temperatures of 990, 1100, and 1320 °C, respectively, Hardness and elastic modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and microindentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface and to 7.5 GPa at the ceramic coating surface after 120 h of testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced microporosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various TBC applications.  相似文献   

14.
The failure mechanisms of thermal barrier coatings (TBCs) subjected to a thermal load are still not entirely understood. Thermal stresses and/or oxidation cause the coating to fail and hence must be minimized. During the present investigation, TBCs up to 1.0 mm were sprayed and withstood high thermal stresses during thermal testing. Owing to the substantial thickness, the temperature at the top coat/bond coat interface was relatively low, resulting in a low oxidation rate. Furthermore, bond coats were preoxidized before applying a top coat. The bond strength and the behavior during three different thermal loads of the preoxidized TBCs were compared with a standard duplex TBC. Finite-element model (FEM) calculations that took account of bond coat preoxidation and interface roughness were made to calculate the stresses occurring during thermal shock. It is concluded that the thick TBCs applied during this research exhibit excellent thermal shock resistance and that a preoxidizing treatment of the bond coat increases the lifetime during thermal loading, where oxidation is the main cause of failure. The FEM analysis gives a first impression of the stress conditions on the interface undulations during thermal loading, but further development is required.  相似文献   

15.
This article addresses the problem of gas permeability of thermal sprayed yttria-stabilized zirconia thermal barrier coatings (TBC)s. The objective of this study was to decrease the open porosity of TBCs through deposition of dense alumina ceramic on the surface of the pores. A simple infiltration technique was used, beginning with aluminum isopropoxide as sol precursor, subsequently hydrated to aluminum hydroxide sol, which decomposed at relatively low temperatures to extra-fine, readily sinterable aluminum oxide. In some experiments, the sol-gel (SG) precursor was combined with fine grains of calcined alumina, constituting high solid-yield composite sol-gel (CSG) deposits within the pores of TBCs. Sinterability in the model systems, including aluminum hydroxide sol-calcined alumina and aluminum hydroxide sol-calcined alumina-zirconia, has been studied. A number of TBC specimens were impregnated with suspensions of alumina sols and CSG. It is shown that these ceramics effectively penetrated into the pores and cracks of TBCs and reduced the coating permeability to gases. The overall reduction of porosity was however small (from ∼12 to ∼11%), preserving the strain and thermal shock tolerance of the coatings. Burner rig tests showed an increase in sealed coating lifetime under thermomechanical fatigue conditions.  相似文献   

16.
For thin (< 200 μm) air plasma spray (APS) and electron beam physical vapor deposition (EBPVD) ceramic thermal barrier coatings (TBCs), some non-destructive techniques indicate damage at the bond coat-TBC interface during either ageing or cyclic oxidation tests. However, no technique is available for thick (> 200 μm) APS TBCs.In this work, a semi-quantitative estimation of cracks at the interface of APS TBCs thicker than 300 μm is obtained from thermal diffusivity values measured by using a single side thermographic technique on coupons subjected to thermal cycling.In fact, during thermal cycling, two phenomena occur: sintering that promotes a significant increase of thermal diffusivity, and cracking that, representing an additional thermal resistance, causes an apparent decrease of thermal diffusivity.The idea presented hereinafter consists in removing the effects of sintering from apparent thermal diffusivity to estimate cracking at the interface.  相似文献   

17.
Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.  相似文献   

18.
Metal-ceramic coatings have been widely used for industrial applications, mainly in the gas turbine and diesel engine industries as thermal barrier coatings (TBCs). Conventional thermal barrier coatings consist of a metallic bond coat and an insulating ceramic topcoat. Temperatures and temperature gradients in the coating during plasma spraying play an important role on the final coating quality, especially the temperature of the particles just hitting the substrate surface. In this work, metal-ceramic coatings were applied on nickel-superalloy substrates. The temperatures of both the coating surface and substrate were measured during spraying. The adhesion of the coatings was determined using ASTM C 633 and correlated with the measured temperatures. Optical pyrometry and thermocouples were used to measure the interfacial and substrate temperatures, respectively. Temperature was shown to have a significant influence where lower interfacial temperatures were found to result in lower adhesion values.  相似文献   

19.
Thermal diffusivities of air plasma sprayed (APS) thermal barrier coatings (TBCs) were measured by the laser flash method. The data were used to calculate thermal conductivity of TBCs when provided with density and specific heat data. Due to the complicated microstructure and other processing-related parameters, thermal diffusivity of TBCs can vary as much as three- to four-fold. Data collected from over 200 free-standing ZrO2-7-8wt.%Y2O3 TBCs are presented. The large database gives a clear picture of the expected “band” of thermal diffusivity values. When this band is used as a reference for thermal diffusivity of a specific TBC, the thermal transport property of the TBC can be more precisely described. This database is intended to serve researchers and manufacturers of TBCs as a valuable resource for the evaluation of TBCs.  相似文献   

20.
Gas turbines provide one of the most severe environments challenging material systems nowadays. Only an appropriate coating system can supply protection particularly for turbine blades. This study was made by comparison of properties of two different types of thermal barrier coatings (TBCs) in order to improve the surface characteristics of high temperature components. These TBCs consisted of a duplex TBC and a five layered functionally graded TBC. In duplex TBCs, 0.35 mm thick yittria partially stabilized zirconia top coat (YSZ) was deposited by air plasma spraying and ~0.15 mm thick NiCrAlY bond coat was deposited by high velocity oxyfuel spraying. ~0.5 mm thick functionally graded TBC was sprayed by varying the feeding ratio of YSZ/NiCrAlY powders. Both coatings were deposited on IN 738LC alloy as a substrate. Microstructural characterization was performed by SEM and optical microscopy whereas phase analysis and chemical composition changes of the coatings and oxides formed during the tests were studied by XRD and EDX. The performance of the coatings fabricated with the optimum processing conditions was evaluated as a function of intense thermal cycling test at 1100 °C. During thermal shock test, FGM coating failed after 150 and duplex coating failed after 85 cycles. The adhesion strength of the coatings to the substrate was also measured. Finally, it is found that FGM coating has a larger lifetime than the duplex TBC, especially with regard to the adhesion strength of the coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号