首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of Ni alloys containing 36.15–44.54 wt.% Cr and 2.0–13.50 wt.% Al was synthesized by Self-Propagating High-Temperature Synthesis (SHS) using a mixture of NiO, Cr2O3 and Al powders in order to obtain low-cost starting materials for thermal spray powder production. The experiments were carried out with the addition of an excess stoichiometric amount of Al between 0 % and 30 %. Additions of CaO and CaF2 were also done to remove sulfur from the alloy and to investigate the effect on metal recovery. Thermochemical simulations of the SHS processes were examined with the FactSage program. The products were characterized by chemical analysis, X-ray diffraction (XRD), electron probe microanalysis (EPMA) and microhardness techniques.  相似文献   

2.
Ultrafine tungsten carbide–cobalt (WC–10 wt.%Co) composite powder was synthesized via spray-drying and direct reduction and carburization process in vacuum, which includes precursor preparation by spray-drying of a suspension of ammonium metatungstate (AMT) and cobalt carbonate (CoCO3), calcination to evaporate volatile components, formation of tungsten–cobalt mixed oxide powder (CoWO4/WO3), ball-milling with carbon black, and subsequent direct reduction and carburization reaction in vacuum. The synthesis temperature of WC–10 wt.%Co composite powder without η or graphite phases is lower than 1000 °C. The calculated particle size by BET test is 0.29 μm. Coarse WC powder (FSSS: 0.9 μm) and Co powder (FSSS: 1.0 μm) (WC:Co = 9:1 in mass) were added into the obtained WC–10 wt.%Co composite powder with addition of 30 wt.%, 50 wt.% and 70 wt.%, respectively. Results show that the hardmetal fabricated from 70 wt.% (WC–10 wt.%Co composite powder) + 30 wt.% (90 wt.%WC + 10 wt.%Co coarse powder) mixed powders exhibits a fine microstructure as well as optimum mechanical properties.  相似文献   

3.
Antibacterial Property of Cold Sprayed Chitosan-Cu/Al Coating   总被引:1,自引:0,他引:1  
The antibacterial behavior of CS-Cu (chitosan-copper complex) powder and their composite coatings were investigated against Escherichia coli (DH5α). CS-Cu powder and Al (aluminum) based CS-Cu composite powders were synthesized using in-house powder processing techniques. The results indicated that the antibacterial effect of all the powders increased with the proportion of CS-Cu powder. These composite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of CS-Cu to Al in their composite powders were 25:75, 50:50, and 75:25 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and FTIR. Antibacterial composite CS-Cu/Al coatings were successfully deposited using cold spraying parameters of 6-8 bars at preheated helium gas, temperature between 140 and 150 °C. The coatings retained the antibacterial properties of the original feedstock powders.  相似文献   

4.
Plasma-Activated Sintering of Aluminum Nitride   总被引:3,自引:0,他引:3  
The use of a new plasma- activated sintering (PAS) process to densify aluminum nitride (AIN) powders to nearly full theoretical density (97 to >99%) in 5 to 10 min was investigated. The process consists of a pulse activation step, followed by sintering at 1730 to 1800 °C using resistance heating in carbon dies. Submicron size (~0.44 μm) AIN powders of low oxygen content (<1 wt%) were consolidated to near full density in both air and vacuum with no sintering aids or binders. Transmission electron microscopy (TEM) examination revealed an equiaxed, submicron grain structure (~0.77 μm) with no apparent pores or intergranular phases. X- ray powder diffraction revealed no secondary crystalline phases.  相似文献   

5.
Magnetic pulse compaction (MPC) allows one to maintain a nanostructured state in nano powder metallic compacts and to achieve near theoretical density. In this study, nano Al powders of about 80 nm in diameter were prepared with the Pulse Wire Evaporation (PWE) method and passivated with a thin Al2O3 layer on a surface about 2 nm thick to prevent further agglomeration and oxidation. The powders were compacted with the dynamic compaction of magnetic pulsed force. The effects of the compaction temperature and passivated oxide layer of Al powders on mechanical properties were investigated. The prepared compacts were considered as the composite materials of the metal-matrix containing oxides of their own metal. A fine and uniform bulk structure was kept up to 400°C, which showed neither further agglomeration nor grain growth during compaction and heat treatment due to the formation of Al/Al2O3 composites. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformations of Nano-Materials”, organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University, Seoul, Korea on October 25–26, 2002.  相似文献   

6.
Ceramic-metal composite (CMC) coatings were deposited on the surface of Fe-0.14–0.22 wt.% C steel by plasma spraying of self-reacting Fe2O3−Al composite powders. The dry sliding friction and wear character of the CMC coatings are investigated in this paper. The wear resistance of the CMC coatings was significantly better than that of Al2O3 coatings under the same sliding wear conditions. The tough metal, which is dispersed in the ceramic matrix, obviously improved the toughness of the CMC coatings. Wear mechanisms of the CMC coatings were identified as a combination of abrasive and adhesive wear.  相似文献   

7.
以低氧氢化脱氢钛粉和陶瓷先驱体聚合物聚碳硅烷(PCS)为原料,通过粉末冶金工艺原位自生制备高强高塑钛基复合材料,探究了PCS的引入对钛基复合材料的控氧效果、烧结致密化过程、基体显微组织和力学性能的影响规律。研究表明:采用湿混包覆工艺可以将PCS包覆于Ti粉表面,有效控制材料制备过程中的氧增,其中制备的Ti-1.0 wt.% PCS复合材料的氧含量为0.21~0.24 wt.%,显著低于未经处理的CP-Ti样品(0.36~0.41 wt.%)。在烧结过程中,PCS受热分解并与Ti基体原位反应生成TiC颗粒,弥散分布在基体中,而Si元素则固溶于Ti基体。PCS的引入对Ti基体的性能具有明显的改善作用,经1200 °C/2 h烧结制备的Ti-1.0 wt.% PCS复合材料致密度达到98.4%,洛氏硬度为47.3 HRC,屈服强度为544 MPa,抗拉强度为650 MPa,延伸率为14.5%,其综合性能指标显著优于CP-Ti样品。  相似文献   

8.
A powder metallurgical technology of low temperature and pressureless is used to fabricate a W-20wt.%Ti alloy using milled TiH2 powders and micro-sized W powders. The microstructure of the milled TiH2 powders and the bulk W–Ti alloy were studied. It is indicated that TiH2 nanoparticles with the size of 8 to 15 nm were obtained after milling for 48 h and the decomposition temperature decreased from 520.2 °C to 395.5 °C. The W-20wt.%Ti alloy prepared at 1200 °C for 80 min had a relative density of 97.8% which was composed of α-Ti, W and β(W/Ti) solid solution. A preparation mechanism of the W–Ti alloy is also proposed based on the experimental results.  相似文献   

9.
A W-3 wt% Mn matrix alloy reinforced with 2 wt% of 24 h pre-milled VC particles were synthesized via high energy milling for 3 h, 6 h, 12 h, 24 h and then sintered at 1300 °C. The W-3 wt% Mn alloy was also prepared by high energy milling of a powder blend of W-3 wt% Mn for 6 h. Effects of milling duration as well as Mn and VC addition on the microstructural and mechanical properties of the W-3 wt% Mn-2 wt% VC composite powders and sintered samples were investigated. Microstructural characterizations of the composite powders and sintered samples were carried out via SEM and XRD analyses. Density measurements and hardness measurements of the sintered samples were also carried out. While the relative density increased from 92.4% for the sintered W-3 wt% Mn matrix to 97.8% for the sintered W-3 wt% Mn-2 wt% VC composite milled for 24 h, there was an increase of ~85% in hardness values for the W-3 wt% Mn-2 wt% VC samples milled for 24 h.  相似文献   

10.
We attempted the room-temperature fabrication of Al2O3-based nanodiamond (ND) composite coating films on glass substrates by an aerosol deposition (AD) process to improve the anti-scratch and anti-smudge properties of the films. Submicron Al2O3 powder capable of fabricating transparent hard coating films was used as a base material for the starting powders, and ND treated by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) was added to the Al2O3 to increase the hydrophobicity and anti-wear properties. The ND powder treated by PFOTES was mixed with the Al2O3 powder by ball milling to ratios of 0.01 wt.%, 0.03 wt.%, and 0.05 wt.% ND. The water contact angle (CA) of the Al2O3-ND composite coating films was increased as the ND ratio increased, and the maximum water CA among all the films was 110°. In contrast to the water CA, the Al2O3-ND composite coating films showed low transmittance values of below 50% at a wavelength of 550 nm due to the strong agglomeration of ND. To prevent the agglomeration of ND, the starting powders were mixed by attrition milling. As a result, Al2O3-ND composite coating films were produced that showed high transmittance values of close to 80%, even though the starting powder included 1.0 wt.% ND. In addition, the Al2O3-ND composite coating films had a high water CA of 109° and superior anti-wear properties compared to those of glass substrates.  相似文献   

11.
α-Sialon powder was made from α-Si3N4, Si, Y2O3 and AIN powders by a SHS process under 3 MPa nitrogen pressure. Hot pressing of the α-Sialon powder with added 0–8 wt.% YAG (Y3Al5O12) at 2223 K for 1.5 hr under 30 MPa resulted in α/β-Sialon composites. α-Sialon content of the hot pressed sample was decreased as YAG content was increased. The number of elongated α- and β-Sialon grains was increased as the YAG content was increased. Vickers hardness of the hot pressed α/β-Sialon composites was decreased as the YAG content was increased, while both the fracture toughness and the flexural strength reached their maxima at 2 wt.% YAG addition.  相似文献   

12.
Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating   总被引:1,自引:0,他引:1  
The antibacterial behavior of HA-Ag (silver-doped hydroxyapatite) nanopowder and their composite coatings were investigated against Escherichia coli (DH5α). HA-Ag nanopowder and PEEK (poly-ether-ether-ketone)-based HA-Ag composite powders were synthesized using in-house powder processing techniques. Bacteria culture assay of HA-Ag nanopowder and their composite powders displayed excellent bacteriostatic activity against E. coli. The antibacterial activity increased with increasing concentration of HA-Ag nanoparticle in these composite powders. These nanocomposite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of HA-Ag to PEEK in their composite powders were 80:20, 60:40, 40:60, and 20:80 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and XRD. Antibacterial nanocomposite HA-Ag/PEEK coatings were successfully deposited using cold spraying parameters of 11-12 bars at preheated air temperature between 150 and 160 °C. These as-sprayed coatings of HA-Ag/PEEK composite powders comprising varying HA-Ag and PEEK ratios retained their inherent antibacterial property as verified from bacterial assay. The results indicated that the antibacterial activity increased with increasing HA-Ag nanopowder concentration in the composite powder feedstock and cold-sprayed coating.  相似文献   

13.
以偏钨酸铵和硝酸铜为原料,采用EDTA-柠檬酸法制备了含有0~0.8wt.%稀土氧化物( Ce0.8Sm0.2O1.9, SDC)的W-20Cu复合粉体,所制备的复合粉体经压制成型、1250°C烧结2h后获得SDC/W-20Cu复合材料烧结体。对所制备复合粉体进行物相、形貌的表征;研究稀土氧化物的添加对SDC/W-20Cu烧结体的密度、组织结构和物理力学性能的影响。实验结果表明:所制备的W-Cu复合粉体平均粒度为100~200nm;同时,SDC的添加对烧结体的密度和电导率会有轻微的影响,但能够抑制晶粒的长大并明显改善烧结体的力学性能。经1250°C烧结后,SDC/W-20Cu烧结体的相对密度均高于97%;当SDC的添加量为0.6%时,具有最大的抗弯强度和显微硬度,分别是1128MPa和258HV;此外,在室温和600°C的测试条件下,其最大的抗拉强度可以达到580MPa和258MPa。  相似文献   

14.
以Ag、Sn、La2O3粉为原料,采用机械合金法制备复合粉体。结合氧化法与粉末冶金工艺,对复合粉体进行氧化、压制、烧结。采用扫描电镜(SEM)和能谱仪、硬度计、金相显微镜、金属电导率测量仪等对复合粉体氧化前后的形貌以及电接触材料烧结前后的性能进行表征。结果表明:烧结后,电接触材料硬度较于烧结前明显下降。同时电接触材料随Sn含量增大,电阻率升高,密度反而下降。在一定的La2O3(0wt.%、0.75wt.%、1.5wt.%、2.25wt.%、3wt.%)含量范围内,La2O3掺杂量越高,密度越低。同时电接触材料经烧结后,随La2O3含量增加,其电阻率先降后升,在La2O3含量为0.75wt.%时,电接触材料的电阻率最低。  相似文献   

15.
Recently, there has been considerable interest in producing cermet coatings with nanoscale carbide grains in the size range 50 to 500 nm. In this article, the production of nanoscale TiC grains in a Ni-based alloy matrix by reactive high-velocity oxyfuel (HVOF) spraying of metastable Ni-Ti-C powder is reported. Mechanical alloying of a Ni(Cr) prealloyed powder and Ti and C elemental powders was performed in a planar-type ball mill, and materials were characterized in detail using x-ray diffraction (XRD) and scanning electron micros-copy (SEM). Phase changes were correlated with milling time and other processing conditions. Results show that, by the selection of appropriate conditions, a metastable Ni-Ti-C powder could be obtained with the nominal composition 50wt.%Ni-40wt.%Ti-10wt.%C. Following sieving and classification, powder was produced with a particle size range of −38 to 8 μm, which is suitable for HVOF spraying. Coatings, approximately 250 μm thick, were deposited by HVOF spraying onto mild steel substrates, and the microstructures formed were investigated. XRD showed that a self-propagating high-temperature synthesis (SHS) reaction had occurred in the powder particles during spraying and that the principal phases present in the coating were TiC and a Ni-rich solid solution; small quantities of NiTi, TiO2, and NiTiO3 were also present. SEM revealed that the coatings had a characteristic, splatlike morphology and that TiC formed as a nanoscale dispersion, with a size range of ∼50 to 200 nm, within solidified splats. The microstructures of these reactively sprayed Ni-TiC coatings are briefly compared with those observed in HVOF-sprayed coatings deposited using prereacted SHS powder. The original version of this paper was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

16.
Powders of pure aluminum (Al) with 55 and 75 vol.% SiC particles were ball milled in a conventional rotating ball mill with stainless steel and ZrO2 balls for 1–10 h. The morphology and microstructure of the milled powders have been observed and analyzed by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX). The milled powders were plasma sprayed onto a graphite substrate to obtain Al matrix composites with high SiC volume fraction. SiC particles in the milled powders existed in two forms; i.e., the combination of Al into composite powder and individual. Plastic Al particles were broken during ball milling, and fine Al particles can be coated onto the surface of SiC particles. Iron contamination in the milled powders occurred when stainless steel balls were used. The iron level can be effectively controlled by using ZrO2 ball media. The milling efficiency by ZrO2 balls is inferior to that by stainless steel balls. Longer milling time was required with ZrO2 balls to achieve the same effect as obtained with stainless steel balls. SiC particles in the sprayed composites from the milled powders exhibited a reasonably uniform distribution and high volume fraction.  相似文献   

17.
Ideally, plasma spraying of metal powders must take place within a narrow processing “window” where the particles become fully molten before they hit the substrate, but are not overheated to the point that substantial volatilization occurs. Metal evaporation in flight results in a decrease in the deposition efficiency. In addiiton, the emission of vapors leads to the formation of metal and oxide fumes that are undesirable from the viewpoints of both resource conservation and environmental control. This study examines the vaporization and fume formation in the plasma spraying of iron powders of different size ranges. The experimental part involves the determination of the population (number density) of metal atoms at different cross sections along the trajectory of the plasma jet, and the collection of the submicronic particles resulting from vapor condensation. The experimental results are compared with the projections of a mathematical model that computes the gas/particle velocity and temperature fields within the jet envelope, projects the rate of heat/mass transfer at the surface of individual particles, and determines the rate of volatilization that results in the formation of metal and metal oxide fumes. This paper was presented at the International Thermal Spray Conference sponsored by the ASM Thermal Spray Society, the DVS-German Welding Society and the IIW International Institute of Welding, May 8–11, 2000 in Montreal, Canada.  相似文献   

18.
The effects of environmental humidity on the flow characteristics of a multicomponent (composite) plasma spray powder have been investigated. Angular and spherical BaF2−CaF2 powder was fabricated by comminution and by atomization, respectively. The fluorides were blended with nichrome, chromia, and silver powders to produce a composite plasma spray feedstock. The tap density, apparent density, and angle of repose were measured at 50% relative humidity (RH). The flow of the powder was studied from 2 to 100% RH. The results suggest that the feedstock flow is only slightly degraded with increasing humidity below 66% RH and is more affected above 66% RH. There was no flow above 90% RH except with narrower particle size distributions of the angular fluorides, which allowed flow up to 95% RH. These results offer guidance that enhances the commercial potential for this material system.  相似文献   

19.
The ball milling process and the CuWO_4-WO_3 precursors were investigated, and a new highly concentrated wet ball-milled process(HWM) was designed. W-20 wt% Cu composite powders with excellent sintering property were synthesized by highly concentrated wet ballmilled process and co-reduction. The powders were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), field electron transmission electron microscopy(FESEM) and laser-diffraction diameter tester.The results indicate that particle size of W03-CuO powder mixtures decreases to 390 nm rapidly with the milling time increasing to 5 h. The CuWO_4 precursors promote the microstructural homogeneity of W and Cu. W-Cu composite powders have a highly dispersed and well sintering property. The particle size of W-Cu powders milled by HWM for 5 h is about 680 nm. High-resolution transmission electron microscopy(HRTEM) result suggests that W phase and Cu phase are mixed at nanometer scale. The above W-Cu composite powders reach the relative density of about 99.3%.  相似文献   

20.
ZrO2(n)、SiC(W)的分散及与MoSi2基质的均匀混合工艺研究   总被引:1,自引:0,他引:1  
通过沉降实验并借助SEM观察探讨了不同分散剂、不同分散介质对纳米ZrO2颗粒分散效果的影响。介绍了SiC晶须分散工艺,探讨了多相悬浮液混合法制备ZrO2(n)/MoSi2复合粉体及SiC(w)/ZrO2(n)/MoSi2复合粉体的均匀混合工艺。结果表明:以PEG为分散剂、水为分散介质可以有效地分散纳米ZrO2并能与基体MoSi2粉末均匀混合;通过调节乙醇悬浮液的pH值,可将SiC晶须均匀分散在ZrO2(n)/MoSi2复合粉体中,获得分布均匀的SiC(w)/ZrO2(n)/MoSi2复合粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号