首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 812 毫秒
1.
高速干铣削高强钢铣削力及表面粗糙度研究   总被引:1,自引:0,他引:1  
选用PVD—TiAlN-TiN硬质合金涂层刀具,进行高速干铣削AISI4340高强钢正交试验,研究铣削力及加工表面粗糙度随切削参数的变化,并建立铣削力及加工表面粗糙度与切削参数之间的经验模型。分析结果表明:每齿进给量和铣削速度对主切削力Fz影响较大,径向切削深度对加工表面粗糙度Ra影响较小。建立的铣削力及加工表面粗糙度经验模型,经过检验,相对误差较小。涂层刀具高速铣削AISI4340钢时,采用较小的轴向切削深度和每齿进给量以及较大的铣削速度和径向切削深度有利于得到较小的铣削力和加工表面粗糙度。  相似文献   

2.
Inconel 718镍基合金材料的切削性能较差,零件的表面粗糙度较难保证。为了提高Inconel 718镍基合金零件的表面粗糙度,采用正交试验和极差分析法研究了高速铣削Inconel 718镍基合金时切削速度、每齿进给量、切削深度、切削宽度等4个铣削参数对表面粗糙度的影响规律。运用多元线性回归分析的方法建立了表面粗糙度的预测模型,经过残差图检验具有较高的显著性。利用表面粗糙度预测模型对随机选取的10组切削参数进行表面粗糙度预测,将预测结果与实际测量结果对比,算出综合误差为5.1%,验证了建立的Inconel 718镍基合金表面粗糙度预测模型的有效性,为实际加工中优化切削参数以提高铣削镍基合金零件表面质量提供了一定的理论依据和参考价值。  相似文献   

3.
高速铣削TC4表面粗糙度预测模型研究   总被引:1,自引:0,他引:1  
零件表面粗糙度的影响因素具有复杂性和不确定性,切削参数是能够人为控制并对零件的表面质量有较大影响的因素之一。为了优选合适的切削参数以达到提高零件表面加工质量的目的,通过设计正交试验并在此基础上建立了钛合金TC4高速铣削表面粗糙度的GRNN广义回归神经网络预测模型和经验回归模型,对其预测误差进行了比较分析。结果表明:所建立的GRNN预测模型较回归预测模型有更高的预测精度,能够更好的对表面粗糙度进行动态控制。  相似文献   

4.
为获得高表面质量的加工零件,利用正交试验法,共进行了28组高速铣削加工试验,研究了轴向切削深度(A_d)、径向切削深度(R_d)、每齿进给量(f_z)和切削速度(v_c)4个加工参数对零件表面粗糙度(R_a)的影响规律。同时,通过开发二阶模型,结合使用回归方程,描述了模型中因素(即4个加工参数)和响应(即表面粗糙度)之间的关系。结果表明:高速铣削加工可以获得最小表面粗糙度0.202 14μm(顺铣加工)和0.207 34μm(逆铣加工),达到了与磨削工艺相当的表面质量;二阶模型较好地拟合了表面粗糙度波动性的分析和预测,对于顺铣加工,波动性由98.73%减小为98.20%,对于逆铣加工,波动性由94.2%减小为92.6%。  相似文献   

5.
径向基函数神经网络在高速铣削表面粗糙度预测中的应用   总被引:1,自引:0,他引:1  
应用RBF神经网络建立了高速铣削模具型腔时已加工表面粗糙度的预测模型,预测值与实测值非常接近,预测精度略高于回归模型的精度.利用该模型对高速铣削表面粗糙度进行了预报,并分析了工艺参数的影响规律,验证了模型对质量监测及工艺参数优化的可行性及实用性.结果表明,通过合理选择工艺参数,尤其在控制切削深度和切削宽度的情况下,可获得Ra0.3 μm以下的已加工表面粗糙度.  相似文献   

6.
基于正交试验法的高速铣削工艺参数优化设计   总被引:2,自引:2,他引:0  
文章使用硬质合金刀具对铝合金(2A70)叶轮进行高速铣削试验,研究分析了不同的切削参数的选择对叶轮叶片加工的表面粗糙度影响.首先采用多因素的正交试验分析了各因素对高速铣削过程中四个目标值的影响;然后利用极差分析方法分析试验结果,指出各个因素对表面粗糙度影响的主次顺序,并确定最优的切削生产条件.试验结果表明:对于铝合金叶片等曲面的加工选择合理的切削参数范围可以获得最小加工表面粗糙度,对于叶片类曲面的高速铣削参数优选具有一定的指导意义.  相似文献   

7.
由于表面粗糙度对零件的使用性能,如零件的相互配合的稳定性、耐磨性、耐腐蚀性和使用寿命等都有着很大影响,所以它是表面加工质量的一个非常重要评价指标。表面粗糙度的形成机制可以归结为刀具结构以及形状参数等变量、切削参数变量、加工零件的形状或者要求的特殊性和切削过程中惯性等变量因数,然而这些因素的影响又不是单独作用在表面粗糙度上的,彼此存在一定的交互影响,因此,研究在铣削铝合金的过程中刀具几何参数及切削参数变化对表面粗糙度的影响,为铝合金的铣削加工提供理论参考。  相似文献   

8.
为了提高大理石加工表面质量,改进表面粗糙度,通过设计正交试验方案,进行CVD涂层刀具高速铣削天然大理石试验,检测加工表面粗糙度,分析天然大理石表面粗糙度随着单一切削参数的变化规律,并基于经验公式,以切削速度、切削深度及进给速度为影响因素建立加工大理石表面粗糙的预测模型。通过试验得到大理石表面粗糙度随着切削速度的增加而降低,随着进给速度和切削深度的增加而增加。结果表明:预测模型具有较高的显著性,为优化切削参数以改善加工大理石表面质量提供一定的参考;切削深度是影响加工大理石表面粗糙度的主要因素。  相似文献   

9.
碳纤维/树脂基复合材料铣削表面粗糙度及表面形貌研究   总被引:1,自引:0,他引:1  
目的研究了CFRP材料铣削加工过程中,部分主要工艺对CFRP材料加工表面质量的影响规律,为工艺参数优化,提高此类零件的表面质量提供依据。方法设计了CFRP材料铣削中的切削参数、刀具结构、加工方法与加工表面粗糙度及表面形貌之间的单因素试验。通过单调改变一个切削参数而其余切削参数不变,得到了工件表面粗糙度和表面形貌随切削参数、刀具结构、加工方法的变化规律。结果当铣削速度增大时,工件的表面粗糙度变化不大,表面微坑缺陷的数量却有所增加,但变小、变浅。当进给速度增大时,工件表面粗糙度呈上升趋势,表面缺陷也随之增加。无涂层多齿刀具铣削后的工件表面粗糙度最大,其次是金刚石涂层多齿刀具铣削的工件,最小的是金刚石涂层交错齿刀具铣削的工件。多齿刀具加工后的表面有较多的微坑缺陷,但普遍深度较浅且面积较小。交错齿刀具对分层缺陷的抑制作用最明显,但在左旋和右旋刀齿交错处容易出现较严重的加工缺陷。与普通机械加工方法相比,超声振动加工方法得到的工件表面质量较好,可以有效减少表面微坑缺陷,改善CFRP铣削加工表面质量。结论 CFRP材料铣削加工时,为了获得较好的加工表面质量,切削参数应选用较高的切削速度和较低的进给速度,切削刀具宜选用多齿带涂层刀具。和普通机械加工方法相比,超声振动铣削加工方法更为有利于获得好的表面质量。  相似文献   

10.
工件变形是影响薄板零件加工精度的主要问题。采用高速铣削加工可减小切削力、切削热、切削振动等产生的工件变形;利用真空吸附铣削夹具装夹工件,使其受到均匀分布的夹紧力,可大大减小因夹紧力造成的工件变形,提高零件的加工精度和表面粗糙度。在介绍真空吸附夹具结构设计与工作原理的基础上,重点阐述薄板零件高速铣削加工真空吸附夹具的设计要点及其应用。  相似文献   

11.
王慧  李南奇  赵国超  周国强 《表面技术》2022,51(2):331-337, 346
目的研究高速铣削参数对航空铸造钛合金Ti-6Al-4V表面质量的影响规律及交互作用,并基于高速铣削参数对表面质量和材料去除率进行优化。方法采用Box-Behnken设计和二次回归正交实验法,建立高速铣削参数与表面粗糙度的显著不失拟回归模型,获得铣削参数影响表面粗糙度的显著性差异,挖掘高速铣削参数交互作用与表面粗糙度的关系;基于表面粗糙度回归模型及材料去除率,采用遗传算法(GA),对高速铣削参数进行多目标优化。结果铣削参数影响航空铸造钛合金Ti-6Al-4V试件表面粗糙度的显著性顺序为:切削深度>每齿进给量>切削宽度>主轴转速,其中切削宽度和主轴转速、每齿进给量和主轴转速的交互作用较为明显。利用遗传算法对铣削参数优化后,Ti-6Al-4V表面粗糙度较优化前提高44%,材料去除率提高70%,遗传算法优化后的试件表面粗糙度显著降低,表面刀路行距减小,纹理平均高度降低。结论由实验验证可知,通过响应曲面建立表面粗糙度显著不失拟回归模型具有较高的预测精度,基于遗传算法优化获得的铣削参数可有效提高表面质量和切削效率,对保证航空铸造钛合金Ti-6Al-4V表面质量具有较好的指导意义。  相似文献   

12.
以单晶镍基高温合金DD98材料为研究对象,搭建微量润滑冷却系统微铣削平台。对比微量润滑和干切削冷却条件下,微铣削工艺参数对表面粗糙度的影响机制和规律。结果表明:在微量润滑冷却条件下,单晶高温合金的表面粗糙度获得较大提升;两种不同冷却方式条件下,微铣削表面粗糙度均随着主轴转速的升高而减小,随着进给速度的增加在克服尺度效应后缓慢增大,随着背吃刀量的增加而增大。  相似文献   

13.
针对6061Al铣削中表面粗糙度预测精度低、切削参数选择不合理的问题,提出一种基于遗传神经网络与遗传算法结合的优化模型,对6061Al切削参数进行优化。采用遗传神经网络(GA-BP)构建表面粗糙度预测模型;基于表面粗糙度预测,以材料去除率为目标函数构建切削参数优化模型;利用遗传算法进行优化求解,对6061Al切削参数进行优化。研究结果表明:所建预测模型表面粗糙度预测精度在97%以上;同时,优化模型能优化6061Al切削参数,达到较好的全局寻优效果,为铝合金工件铣削加工切削参数优化提供参考。  相似文献   

14.
微细铣削时积屑瘤现象的研究   总被引:1,自引:0,他引:1  
针对微细铣削实验时的积屑瘤现象,在分析其成因的基础上,研究了切削用量、切削液、刀具几何参数、刀具表面粗糙度及工件材料硬度等因素对积屑瘤的影响机制;分析了积屑瘤的产生对加工工件精度、切削力及切削振动的影响;提出了在微细铣削过程中抑制积屑瘤生成的主要方法。  相似文献   

15.
对铣削钛合金TC11的表面粗糙度进行研究。建立表面粗糙度的3种预测模型,分析模型与表面粗糙度测量值的拟合情况,并进行信噪比S/N分析和ANVOA分析,得到了各切削参数对表面粗糙度的影响程度的大小以及最佳切削参数组合。提出了采用有限元仿真铣削工件表面的位移大小,把表面的轮廓算数平均偏差作为表面粗糙度评定参数的方法。仿真结果与试验结果基本一致,表明了该方法的可行性及有效性。  相似文献   

16.
微细铣削不锈钢310S表面完整性试验研究   总被引:1,自引:1,他引:0  
目的揭示微细铣削下的切削深度ap、进给量f、切削速度v对不锈钢310S表面完整性的影响规律,为优化不锈钢310S的切削工艺提供参考。方法基于响应曲面方法,采用涂层硬质合金微直径铣刀,对不锈钢310S进行了铣削加工试验,对表面粗糙度、表面形貌和显微硬度的数据和信息进行采集并分析,进行多元非线性回归,建立了表面粗糙度Ra与切削参数之间的映射关系,对多元回归方程进行了显著性检验。结果得到切削参数ap、v、f显著度分别为0.099、0.620、0.011。基于曲面响应法的试验数据及数学模型,直观地绘制了ap、v、f对表面粗糙度Ra、表面形貌和显微硬度的影响规律图。结论在一定的切削加工参数范围内,进给量f对微细铣削不锈钢310S表面粗糙度Ra的影响最显著,其次是切削深度ap,切削速度v的影响最小。表面留有摆线状加工痕迹,顺铣侧的残留物分布多于逆铣侧。切削深度ap对310S试件表层显微硬度的影响最显著,其次是切削速度v。减小进给量f是降低不锈钢310S表面粗糙度的有效加工方法。  相似文献   

17.
采用热丝CVD法制备纳米金刚石薄膜涂层刀具,利用场发射扫描电子显微镜表征薄膜的表面形貌,并用已制备的CVD金刚石涂层刀具,在无润滑干切条件下高速铣削7075铝合金工件,对其精铣工艺参数进行单因素及正交试验,探索精铣后工件的表面粗糙度变化规律并进行工艺参数优化。结果表明:随着主轴转速n从5000 r/min提高到8000 r/min, 工件平均表面粗糙度在逐级缓慢降低;当进给速度vf在1000~7000 mm/min范围内,随着vf提高工件平均表面粗糙度快速增大,在vf为7000 mm/min时,其值达1.790 μm;当轴向切削深度ap在0.1~0.4 mm范围内,随着ap提高,工件平均表面粗糙度逐步增大,但ap在0.2 mm之后其增大趋势变缓。对7075铝合金工件精铣表面粗糙度影响最大的是vf,其次为n,ap的影响最弱;其精铣的最优参数组合是ap=0.2 mm、vf=1 000 mm/min、n=8 000 r/min,精铣后的表面粗糙度平均值为0.516 μm。选用纳米金刚石薄膜涂层刀具精铣7075铝合金时,为得到较低的表面粗糙度,应选择高主轴转速、低进给速度、合适的轴向切削深度。   相似文献   

18.
分析以往建立表面粗糙度预测模型方法的不足,采用响应曲面法(RSM)建立了钢及其合金铣削加工表面粗糙度预测模型。经检验,该模型预测精度高,泛化能力强,且可简便预测铣削参数对已加工表面的表面粗糙度的影响,有助于准确认识已加工表面质量随铣削参数的变化规律,为切削参数的优选和表面质量的控制提供了依据。  相似文献   

19.
解析模型是基于刀具切削刃包络面形成的原理来研究零件表面形貌的形成.在解析模型的基础上研究球头刀铣削过程的零件表面生成机理、分析影响加工表面粗糙度大小的因素以及表面粗糙度的趋势,进而预测表面粗糙度,有助于数控加工条件的最优化.本文利用计算机图形学算法进行建模,该模型能够仿真已加工表面轮廓的形成和表面形貌的可视化、预测表面粗糙度和评估加工过程参数的合理性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号