首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-1500热模拟试验机进行等温恒应变速率热压缩实验,探究了Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金在应变速率为0.1~10 s-1、变形温度为1173~1323 K及最大变形量为60%条件下的高温塑性变形行为。探究了工艺参数对真应力-真应变曲线的影响,采用Arrhenuis模型构建了耦合应变的本构方程,基于动态材料模型及Babu流变失稳准则构建了热加工图。结果表明,Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的流动应力随应变速率的减小及变形温度的增加呈下降并趋于平稳的趋势,且温度敏感性在低温区比高温区强。真应力-真应变曲线在变形温度1173~1273 K下的α+β相区呈现出动态再结晶特征,在变形温度为1323 K的β相区呈现出动态回复特征。建立的耦合应变的Arrhenuis本构方程具有较高的预测精度。利用Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金热加工图,确定了该合金最优塑性变形工艺参数为变形温度为1230~1323 K和应变速率为0.1~0.816 s-1。  相似文献   

2.
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金β加工动态再结晶行为研究   总被引:1,自引:0,他引:1  
利用Thermecmastor-Z热模拟试验机,在变形温度102~1080℃和应变速率0.001~70 s-1范围内对原始等轴组织的Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金进行等温恒应变速率压缩实验,分析高温流动行为,构建基于动态材料模型的功率耗散图,并结合微观组织观察对其β加工的动态再结晶行为进行研究.结果表明,Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金在β单相区变形时,不同温度和应变速率下的流动应力曲线均呈稳态流动特征,但仅根据流动应力曲线并不能确定是否发生动态再结晶.根据功率耗散图分析和微观组织观察可知,Ti.6.5Al-3.5Mo-1.5Zr-0.3Si合金β加工易发生动态再结晶的热力参数范围为:变形温度.1020~1080℃,应变速率0.01~0.1 s-1,此区域功率耗散功率,,值都大于0.4,为实际β加工时优化的热力参数范围;应变速率过高或过低,均不易发生动态再结晶.  相似文献   

3.
利用Thermecmastor-Z热模拟机进行Ti-6Al-2Zr-1Mo-1V钛合金在不同工艺参数(变形温度800,850,900,1000,1050°C,应变速率0.01,0.1,1,10s-1)条件下的热模拟压缩试验,研究变形温度和应变速率对Ti-6Al-2Zr-1Mo-1V钛合金流变应力的影响。以试验数据为基础,应用BP神经网络算法原理,建立该合金的高温流动应力与变形温度、应变和应变速率对应关系的高温本构关系预测模型。结果表明,运用神经网络方法建立的Ti-6Al-2Zr-1Mo-1V钛合金本构关系模型具有较高的预测精度,与试验结果吻合良好。此外,运用Visual Basic可视化编程语言设计并开发了具有神经网络功能的用户界面。  相似文献   

4.
采用等温压缩试验研究不同原始组织对Ti-5Al-2Sn-2Zr-4Mo-4Cr合金流动应力、应变速率敏感性指数、应变硬化指数和表观变形激活能的影响。结果表明:原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金具有更高的峰值应力和流动软化效应,当变形温度高于或等于810°C、应变速率为0.1~5.0 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金存在初始屈服现象。当应变为0.5~0.7、变形温度较低、应变速率为0.01 s-1时,原始组织为等轴组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的应变速率敏感性指数值较大,这主要归因于其显微组织演变特征。隋着变形的进行,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金发生了α片层弯曲和动态球化现象,这使得其应变硬化指数变化显著。当应变为0.15~0.55时,原始组织为片层组织的Ti-5Al-2Sn-2Zr-4Mo-4Cr合金的表观变形激活能更大。  相似文献   

5.
Ti-25Al-14Nb-2Mo-1Fe合金的热变形行为及本构方程的建立   总被引:1,自引:0,他引:1  
通过热模拟压缩试验研究了Ti-25Al-14Nb-2Mo-1Fe合金在变形温度950~1100℃,变形速率0.001~1 s-1,最大变形程度50%条件下的热变形行为。结果表明,Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对热变形工艺参数(变形温度和变形速率)的敏感性较高,其真应力-真应变曲线具有峰值应力、应变软化和稳态流动特征。采用Arrhenius双曲正弦函数和多元回归处理法确定了合金在试验条件下的应力指数n、变形激活能Q等材料参数,建立了Ti-25Al-14Nb-2Mo-1Fe合金高温变形本构关系模型。  相似文献   

6.
采用Gleeble-3500型热模拟试验机,对Ti-10. 2Mo-4. 9Zr-5. 5Sn合金进行等温恒应变速率压缩实验,研究其在变形温度943~1093 K,应变速率0. 001~10 s-1范围内的热变形行为,并构建一个层数为3×15×10×1的PSO-BP神经网络结构形式的本构关系模型。结果表明,合金的流变应力对变形温度和应变速率较为敏感,变形温度升高和应变速率减小都会使流变应力降低;在高温和低应变速率条件下,流变曲线大多呈现稳态流动特征,但在应变速率为10 s-1时,流动应力随应变增加呈下降趋势,软化现象较为显著;采用PSO-BP神经网络建立Ti-10. 2Mo-4. 9Zr-5. 5Sn合金本构模型,经过误差计算得出,该模型的相关系数和平均相对误差分别为0. 9892和2. 48%,预测值偏差在10%以内的数据点占91. 59%,具有良好的精度。  相似文献   

7.
采用Gleeble-3500型热模拟试验机对Ti-10.2Mo-4.9Zr-5.5Sn合金进行等温恒应变速率压缩试验,研究其在变形温度为670~820℃,应变速率为0.001~10s~(-1)范围内的热变形行为,并计算了热变形激活能。结果表明,合金的流动应力对变形温度和应变速率较为敏感,变形温度升高和应变速率减小都会使流动应力降低。该合金的热变形激活能高于纯α钛和和纯β钛合金的自扩散激活能;采用多元线性回归方法建立Ti-10.2Mo-4.9Zr-5.5Sn合金的本构模型,经过误差计算,得出该模型的相关系数和平均相对误差分别为0.987 5和4.99%,精度较高。  相似文献   

8.
通过高温压缩模拟实验,分析了Ti-6Al-2Zr-1Mo-1V合金在变形温度为850~1100℃,应变速率为0.01~10 s-1条件下的高温变形力学行为规律,并利用线性回归方法计算了不同温度范围内的应力指数n和变形激活能Q,获得了该合金高温变形力学行为计算模型.结果表明,Ti-6Al-2Zr-1Mo-1V合金对变形温度和应变速率非常敏感.在恒温时流动应力随应变速率的增大而增大,在恒应变速率时随变形温度的升高而降低.在850~950℃时,n、Q分别为7.0874和610.463 kJ/mol;而在950~1100℃时,n=4.7324,Q=238.030 kJ/mol,该预测模型的计算值与实测值之间的相对误差分别为6.341%和6.957%.  相似文献   

9.
本文测定了Ti-679合金在不同应力和温度下的稳态蠕变速度,并用应变速率循环法测定了各种温度下的激活面积,最后对合金的蠕变机构进行了讨论。一、实验方法试验用料是抚顺钢厂生产的Ti-679合金(Ti-2.25Al-11Sn-5Zr-1Mo-0.25Si)直  相似文献   

10.
左晓华  李庆丽 《铸造技术》2014,(8):1905-1907
根据实验获得的Ti-6Al-2Zr-1Mo-1V合金真实应力-应变曲线,通过计算机模拟研究了该合金在不同应变速率和温度下临界损伤因子的变化。结果表明,Ti-6Al-2Zr-1Mo-1V合金的最大损伤值总是分布在墩粗鼓的最外缘部位,并且应变速率对材料损伤软化现象影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号