首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
流体压力脉动致振是影响大型服务器液冷系统管道可靠性的重要因素之一.基于ANSYS workbench中的模块连接功能,提出一种液冷管道振动应力分析方法.首先在Static Structural模块中分析管道在稳定流体压力作用下的应力情况,然后在Harmonic Response模块中分析管道在流体压力脉动作用下的响应情况.测量实际管道的振动加速度,并结合有限元仿真计算结果进行对比分析,确定液冷管道中流体的压力脉动幅值.分析结果表明:弯管处是管道上应力最大的部位,应优先进行振动可靠性分析.该成果可为大型服务器液冷系统管道可靠性研究提供了一种可行的振动分析方法.  相似文献   

2.
流体压力脉动致振是影响大型服务器液冷系统管道可靠性的重要因素之一。基于ANSYS workbench中的模块连接功能,提出一种液冷管道振动应力分析方法。首先在Static Structural模块中分析管道在稳定流体压力作用下的应力情况,然后在Harmonic Response模块中分析管道在流体压力脉动作用下的响应情况。测量实际管道的振动加速度,并结合有限元仿真计算结果进行对比分析,确定液冷管道中流体的压力脉动幅值。分析结果表明:弯管处是管道上应力最大的部位,应优先进行振动可靠性分析。该成果可为大型服务器液冷系统管道可靠性研究提供了一种可行的振动分析方法。  相似文献   

3.
流体压力脉动致振是影响大型服务器液冷系统管道可靠性的重要因素之一。基于ANSYS workbench中的模块连接功能,提出一种液冷管道振动应力分析方法。首先在Static Structural模块中分析管道在稳定流体压力作用下的应力情况,然后在Harmonic Response模块中分析管道在流体压力脉动作用下的响应情况。测量实际管道的振动加速度,并结合有限元仿真计算结果进行对比分析,确定液冷管道中流体的压力脉动幅值。分析结果表明:弯管处是管道上应力最大的部位,应优先进行振动可靠性分析。该成果可为大型服务器液冷系统管道可靠性研究提供了一种可行的振动分析方法。  相似文献   

4.
杨超  范士娟 《机床与液压》2006,(8):144-145,187
采用特征线法,利用扩展水击振动模型分别在两种液体摩擦模型下对一典型液压系统的轴向水击振动响应进行了研究。仿真计算结果与实验结果基本一致,相对误差小于0.3%,表明仿真方法正确。在此基础上,分析了最大水击压力与液体流速的关系。该仿真方法既可以指导液压系统管道的设计,还可以推广应用于其它输液管道的水击振动研究与分析。  相似文献   

5.
针对液压输流管内的压力脉动研究,提出流体压力脉动的计算方法和管道流固耦合分析的计算模型。对流体压力脉动进行编程,得到压力脉动作用产生激振力的变化。建立管道和流体实体模型,采用UDF技术将脉动压力编译到流体中,从而进行流固耦合瞬态力学分析,得到异径管和弯管处流体压力变化以及管道的应力和变形情况。研究结果表明:压力脉动沿管道传播发生衰减,其产生的激振力对弯管破坏较大;弯管段流体产生压力集中,进而引起弯管段变形大于异径管段。将压力脉动加载到管道中,对输流管道研究具有一定参考价值。  相似文献   

6.
考虑液固耦合的输液管道振动的研究能更准确地反映振动过程的机理和能量的分布,与实际情况更接近,对于管道振动的减振降噪具有重要意义.以输液管道为研究对象,考虑重力所做的功、液体压力的变化以及液体黏性等因素,运用Hamilton变分原理,建立了在考虑液固耦合条件下,输液管道的横向运动方程和轴向运动方程,为后续的分析计算提供了参考.  相似文献   

7.
含缺陷管道极限压力分析是管道结构完整性评定的重要内容之一,合理选择与发展含缺陷管道极限压力的计算方法对于评估管道剩余强度具有重要意义.综合介绍了几种类型含缺陷管道的极限压力的工程计算模型.  相似文献   

8.
针对80kN快锻压机管系振动问题,分析了压力管道振动原因,采用有限元方法,重点对高压管段进行了模态分析与谐响应分析;为避免管道结构共振,分析了增加管夹支承及改变支撑性质对管道振动频率、应力、应变的影响.同时考虑了存在预应力管道的模态分析,得出预应力的存在会使管道固有振动频率略微增加.通过对高压管道进行了流场分析与单向流固耦合作用下动力学分析,获得了管道中流体速度、压力的分布规律与应力、应变云图,得到管道动态力作用下的危险部位,分析结果对快锻压机管道结构设计具有一定理论与实践意义.  相似文献   

9.
针对现有液压振动技术的应用现状以及液压系统中存在的液压冲击现象,提出一种利用液压冲击来产生振动的激振系统。该系统以激波器为波动发生器,以管道为受控对象。阐述液压波动发生的机制,并搭建振动试验测试平台。对管道中的压力波动进行研究,计算压力脉动的最大理论值,并进行试验验证,结果表明:两者吻合较好,管道中的压力波动受控于系统频率。对管道振动特性的试验表明:管道两端的振动强度大于中间的振动强度;管道的振幅随系统频率与系统压力的增大而增大;系统压力在4.6 MPa以上,再增大系统压力,对管道振幅的影响不大。  相似文献   

10.
针对现有液压振动技术的应用现状以及液压系统中存在的液压冲击现象,提出一种利用液压冲击来产生振动的激振系统。该系统以激波器为波动发生器,以管道为受控对象。阐述液压波动发生的机制,并搭建振动试验测试平台。对管道中的压力波动进行研究,计算压力脉动的最大理论值,并进行试验验证,结果表明:两者吻合较好,管道中的压力波动受控于系统频率。对管道振动特性的试验表明:管道两端的振动强度大于中间的振动强度;管道的振幅随系统频率与系统压力的增大而增大;系统压力在4.6 MPa以上,再增大系统压力,对管道振幅的影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号