首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将Al-Cu-Mn铝合金热挤压加工成棒材,然后对其进行固溶淬火处理以及在175℃下进行不同时间的时效处理,研究了热挤压、固溶淬火以及时效等对该合金微观组织的影响.结果表明:热挤压后,没有铸态下的大晶粒存在,且晶界也不明显,脆硬相被挤碎,在T相附近有再结晶晶粒出现,这些微观结构均沿挤压变形方向排列;固溶淬火后,T相弥散析出,挤压变形后的微观金相组织仍然存在,未固溶脆硬相的数量和尺寸均有所减小,但再结晶晶粒尺寸增大,同时出现了一些新的尺寸细小的再结晶晶粒;时效处理对微观金相组织的影响不大.  相似文献   

2.
铈对Al-Cu-Mg-Mn-Ag合金时效析出与显微组织的影响   总被引:1,自引:1,他引:1  
通过铸锭冶金及形变热处理,制备了不同铈含量的Al-Cu-Mg-Mn-Ag合金。采用金相观察、差热分析、扫描电镜及透射电镜研究了添加铈对合金的时效析出过程及显微组织的影响。结果表明:添加铈能显著细化铸态合金的晶粒,使平均晶粒尺寸由93μm减小至30μm,还可以加速挤压态合金的时效硬化过程,提高硬化水平,使最大硬度提高10%以上;此外,添加铈可缩短合金的峰时效时间,降低主要强化析出相—Ω相的析出温度,同时,也降低?相的直径,提高其析出体积分数及其在200~300℃时的高温热稳定性。  相似文献   

3.
对固溶态A286合金实施不同形变量的拉拔变形,并进行不同制度时效处理。采用金相显微镜、扫描电镜和力学试验机等设备,系统分析比较了不同形变量及时效制度下合金的晶粒形态、析出相和拉伸性能的变化情况。结果表明:时效不改变合金的晶粒形态;当变形量低于30%时,合金组织为等轴晶,孪晶较多,形变量超过35%时,组织开始纤维化,晶内出现明显变形特征;对于同一时效制度,以弥散的γ'相和粒状碳化钛、碳化铬为主的析出相的数量随形变量的增大而增加,合金的抗拉强度也随之提高;对于同一形变条件,经650℃和680℃两种温度时效后γ'相呈方型,其尺寸随温度升高而增大,680℃+650℃两段时效后γ'相变成更为稳定的球型,且两段时效后的析出相数量较多,抗拉强度最高。  相似文献   

4.
研究了添加稀土元素的不同高铝含量的变形挤压态镁合金的微观组织和力学性能。结果表明,铝含量的增加,挤压合金晶粒的得到了明显的细化,平均晶粒尺寸为(12±4)μm。挤压态合金的显微硬度高于固溶态合金的显微硬度;随着铝含量的增加,合金的时效硬化行为得到明显的改善。这些主要是由于在挤压过程中晶粒的细化和沿着挤压方向第二相的析出。另外,随着铝含量的增加,合金的屈服强度和抗拉强度也有所提高,分别达到了306和348 MPa。这主要取决于晶粒的进一步细化和析出相体积分数的增加。因镁稀土相和β-Mg17Al12相都为脆性相,铝含量的增加引起析出相体积分数的增加,也同时导致合金的伸长率有所下降。  相似文献   

5.
研究铸态晶粒尺寸对AZ91合金固溶时效组织的影响,并对析出相与合金显微硬度之间的关系进行了分析.结果表明,合金铸态晶粒尺寸越小,其固溶效率越高,时效处理时β相的连续析出速度越快;在时效处理过程中,无论铸态晶粒尺寸或大或小,合金的显微硬度值都随着连续析出的β相数量的增加先升高后降低;并且铸态晶粒尺寸越小,其硬度峰值越高,达到峰值所用的时间越短.  相似文献   

6.
通过光学显微镜、扫描电镜和透射电镜对Zr-Sn-Nb系两种合金淬火时效样品进行观察分析,研究了合金元素Cu对锆合金淬火后微观组织的影响及在时效过程中对第二相析出规律影响。结果表明:淬火态样品中没有第二相析出,且Cu元素的添加可以细化晶粒及淬火板条组织,提高合金硬度;经过时效处理后,第二相首先在晶界位置析出;随着保温时间的延长,合金元素扩散充分。透射电镜结果显示,Cu元素促进第二相形核析出以及细化第二相尺寸。  相似文献   

7.
利用光学金相显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)以及能谱(EDS)对不同Y含量的ZMT614-x Y(x=0,0.1,0.5,1.0)合金挤压态和时效态的微观组织和加工硬化行为进行了研究。结果表明:ZMT614-x Y(x=0,0.1,0.5,1.0)合金挤压态和时效态的晶粒尺寸随着Y含量的增加而减小。当Y质量分数达到1%时,出现新的不规则块状Mg Sn Y相。通过ZMT614-x Y(x=0,0.1,0.5,1.0)合金挤压态和时效态的真应力-应变曲线得到加工硬化率(θ)和加工硬化指数(n)。由于晶粒细化,合金挤压态和时效态的加工硬化率θ随着Y含量的增加而减小。在合金的塑性变形过程中,发生位错的动态回复,合金挤压态和时效态的加工硬化率θ随着变形量的增加而减小。  相似文献   

8.
本文以Mg-8Al-2Sn变形镁合金为研究背景,通过在Mg-8Al-2Sn合金中添加0-2 wt.%含量的Zn元素,研究了Zn添加对Mg-8Al-2Sn挤压镁合金显微组织和性能的影响。研究结果表明,铸态Mg-8Al-2Sn-xZn合金的相组成主要是α-Mg相、Mg17Al12相和Mg2Sn相。在添加Zn元素以后,合金中的共晶化合物的形态发生变化,由共晶组织变为离异共晶组织。挤压过后,晶粒组织尺寸更均匀。Zn元素的加入,会促进合金中第二相在挤压过程中的动态析出以及第二相尺寸的粗化。合金在时效中产生的析出相的数量也随着Zn含量的增多而增加。随着Zn含量的增加,挤压态和时效态合金的屈服强度和抗拉强度都随之增加。当Zn含量达到2 wt.%时,合金力学性能最好,其时效态的抗拉强度,屈服强度和延伸率分别是385 MPa, 291 MPa和6.44%。  相似文献   

9.
通过金相显微组织观察和断口SEM分析,研究了热处理对挤压AZ91镁合金拉伸变形与断裂行为的影响。结果表明:AZ91镁合金固溶态与挤压态相比抗拉强度变化不大,但伸长率有较大幅度的提高,晶粒尺寸有所增大;时效峰值态的抗拉强度与固溶态相比有一定的提高,但伸长率有较大幅度的降低,合金固溶时效处理后伴有强化相粒子析出。AZ91合金挤压态和固溶态的断面都有韧窝特征,为微孔形核的韧性断裂机制,而在时效峰值态的断面上则呈现出了韧性与脆性混合断裂的特征。  相似文献   

10.
通过对不同Sn含量ZM81合金的微观组织和力学性能表征,研究了Sn在ZM81合金中的存在形式和作用机制及不同添加量对合金显微组织和力学性能的影响。结果表明:Sn元素主要以Mg2Sn共晶相形式存在,能够细化铸态组织;热挤压过程中,Sn添加能够起到抑制动态再结晶和晶粒细化的作用;T6处理,尤其是双级时效,能显著提升挤压态合金的力学性能,其中ZM81-4Sn合金具有最佳综合力学性能,其抗拉强度、屈服强度和延伸率分别为416 MPa、393 MPa和4.1%。实验合金高强度主要源于Mg Zn2和Mg2Sn析出相的双重时效强化效果;相比单级时效,双级时效态合金的析出相更细小弥散,因此其力学性能更优。  相似文献   

11.
研究均匀化、挤压以及热处理对Mg-5.77%Zn-0.94%Mn(ZM61)(质量分数)镁合金显微组织和力学性能的影响。结果表明:ZM61铸态组织呈枝晶结构,枝晶间网状的和枝晶内颗粒状的金属间化合物为Mg7Zn3;经(330℃,8 h)+(420℃,2 h)的两级均匀化处理后,化合物绝大部分溶解于基体;两级均匀化处理可大幅降低合金的挤压温度(降低幅度30℃)、减少挤压态组织中的残余流线、提高挤压态合金的伸长率、缩短固溶时间,但并未明显细化挤压态合金的晶粒;对于可时效强化的ZM61变形镁合金来说,晶粒大小对其力学性能的影响不大,起主要强化作用的是时效析出相的类型、尺寸和弥散程度;ZM61在时效过程中主要析出沿[0001]α-Mg的β1′杆状相和平行于(0001)α-Mg的β2′盘状相的析出相,其中β1′杆状相为起主要强化作用的析出相。  相似文献   

12.
研究不同形变热处理条件下Cu-5.2Ni-1.2Si合金的性能与显微组织结构,对合金的力学性能和电学性能进行测量,并采用金相显微镜、透射电镜及电子衍射分析其显微组织。结果表明:时效前的冷变形可以加速时效析出过程,在时效初期尤为明显;在450℃时效时该合金的峰时效有3种强化机制:调幅组织强化、析出的第二相粒子强化和有序强化;析出的第二相粒子主要是Ni2Si粒子;采用铸锭—热轧—冷轧(变形量为60%)—时效工艺处理的合金可以得到硬度和导电率的最优组合。  相似文献   

13.
研究了稀土元素Y对铸态与挤压态Mg-Zn-Y合金组织与力学性能的影响。通过铸造与挤压不同Y含量的Mg-Zn-Zr-Y合金并进行金相组织分析,发现Y的添加改变了镁合金中第二相的组成、形态和分布,细化了晶粒尺寸。同时对Mg-Zn-Zr-Y合金的力学性能进行了测试。结果表明,由于Y引入的三元化合物W相在热挤压过程中破碎并弥散分布,使得合金最终晶粒尺寸为5~7μm,极大提高了合金的力学性能。  相似文献   

14.
采用SEM附带的背散射电子通道衬度(ECC)像、二次电子(SE)像及能谱(EDS)分析技术,研究了β相水淬后预变形处理对Zr-Sn-Nb合金在时效过程中再结晶和第二相析出的影响规律.结果表明,未引入预变形直接时效时所得组织中再结晶晶粒尺寸粗大且形状不规则,第二相粒子尺寸差异也较大,其中尺寸大的第二相粒子为含Cu的Zr3Fe,主要沿原β晶界分布;预变形后再时效的组织中再结晶晶粒显著细化且尺寸均匀,第二相粒子尺寸差异减小,大尺寸的Zr3Fe粒子主要沿α再结晶晶界分布.无论有无预变形或时效时间长短,晶粒内部析出相均为弥散分布的小尺寸Zr(Fe,Cr,Nb)2粒子.引入预变形会减弱沉淀相沿晶界析出和急剧长大的倾向,使锆合金的微观组织和第二相分布特征改变.  相似文献   

15.
本文采用扫描电子显微镜(SEM)和透射电子显微镜(TEM),系统研究了经6%和12%预压缩变形处理后Zr-Sn-Nb-Fe-Cr-Cu合金在时效过程中的第二相析出行为。研究结果发现,预变形量对Zr合金时效析出行为有显著的影响,在相同的时效条件下,预压缩变形量为12%的合金第二相粒子平均尺寸比6%的合金小约10nm;600℃下时效时,Zr合金的第二相粒子平均尺寸与预变形量呈线性反比关系。透射电镜分析结果表明,合金在500℃低温时效30min时先析出含有少量Cu元素的正交结构Zr3Fe相;当时效1800min后,除了大尺寸的Zr3Fe外还有六方结构的Zr(Fe,Nb)2析出,但预压缩变形量对Zr合金的第二相析出种类没有显著影响。  相似文献   

16.
采用上引连铸-连续挤压技术制备Cu-0.88Cr-0.14Zr(质量分数)合金,并对挤压后的棒材进行不同制度的时效处理。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射技术(EBSD)等分析测试手段研究合金经不同工艺/制度处理后的组织与性能的变化。结果表明:上引连铸Cu-Cr-Zr合金棒坯在连续挤压过程中发生了剧烈的剪切变形和动态时效,晶粒明显细化,析出尺寸为15~20 nm的Cr相,与铸态相比,挤压态合金的导电率与硬度分别增加了28.6%IACS、49.6 HV。确定了挤压态合金杆材经(925℃,12 h)均匀化退火和(1000℃,1 h)固溶处理后的峰时效制度是(475℃, 3 h),此时基体中析出了平均晶粒尺寸为2.6 nm的Cr相,合金的导电率和硬度分别可达73%IACS、155 HV。  相似文献   

17.
形变热处理工艺对2024铝合金组织及力学性能的影响   总被引:2,自引:0,他引:2  
采用力学性能测试、金相显微分析、x射线衍射物相分析、扫描电镜断口扫描等手段,研究了形变热处理工艺对2024铝合金组织及性能的影响。研究结果表明,预变形使合金的时效强化效果提前;随着变形量的增加,延伸率有所下降,合金强度先提高后降低,在变形量为40%时最大。析出相随变形量增大而更加弥散细化;但大变形时效态的合金析出强化相明显减少,表明大变形使合金析出相的析出机制发生了改变。  相似文献   

18.
热处理对挤压镁合金AZ91和ZK60组织与性能的影响   总被引:4,自引:1,他引:4  
通过力学性能测定以及金相显微组织观察,对挤压态AZ91和ZK60镁合金的热处理工艺进行了研究。结果表明,AZ91合金固溶态与挤压态相比抗拉强度变化不大,但伸长率有较大幅度的提高;时效硬度峰值时的抗拉强度与固溶态相比有一定的提高,但伸长率有较大幅度的降低。ZK60合金固溶态与挤压态相比抗拉强度和伸长率均有相当程度地降低,且时效硬度峰值时的抗拉强度与同溶态相比有一定的提高,伸长率也有较大幅度的降低。AZ91合金固溶处理后晶粒尺寸与挤压态相比有所增大,但ZK60合金固溶处理后晶粒尺寸显著粗化。同时,两种合金固溶时效处理后伴有强化相粒子析出。  相似文献   

19.
通过对不同Sn含量的ZM81合金的微观组织和力学性能的测得,研究了Sn在ZM81合金中的存在形式和作用机制及不同添加量对合金显微组织和力学性能的影响。研究结果表明:Sn元素主要以Mg2Sn共晶相形式存在,能够细化铸态组织;热挤压过程中,Sn添加能够起到抑制动态再结晶和晶粒细化的作用;T6处理,尤其是双级时效,能显著提升挤压态合金的力学性能,其中ZM81-4Sn合金具有最佳的综合力学性能,抗拉强度、屈服强度和延伸率分别为416MPa、393MPa和4.1%。实验合金高强度主要源于MgZn2和Mg2Sn析出相的双重时效强化效果;相比单级时效,双级时效态合金的析出相细小弥散,因此其力学性能更优。  相似文献   

20.
利用扫描电镜、透射电镜、金相显微镜及显微硬度仪等研究了Cu-Ni-Si合金在铸态、热轧态、固溶态、冷轧和时效态的显微组织、晶粒取向及大小和析出相的演变过程,分析热轧流程中各类组织及工艺状态对合金性能的影响规律。结果表明:合金成分是影响枝晶偏析和再结晶程度的关键,热轧后晶粒择优取向明显,发生部分再结晶,晶格畸变程度增大,导电率明显下降;随着固溶温度的升高和固溶时间的延长,合金抗拉强度、硬度和导电率均呈下降趋势,合金经900℃、1 h处理后达到最佳固溶效果,?3晶界达到35.2%,大角晶界达到了64.4%,晶粒取向均匀;冷轧后,晶粒被拉长、撕碎,基体产生大量缺陷,为时效析出提供核心作用;冷轧变形量越大,时效析出动力越强,析出相越细小、均匀,综合性能越好;合金在经450℃、3h处理后达到最佳时效效果,硬度为259HV,导电率为36.5%IACS。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号