首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel–iron alloys with a compositional range of 24–80?wt-% iron were electrodeposited on a copper substrate from a sulphate-based bath and using a stirring rate of 100?rev?min?1. The effect of applied current density and Ni2+/Fe2+ metal ion ratio of plating bath on the properties of alloy coatings was examined. Crystal structure and grain size of Ni–Fe alloy coatings were investigated using X-ray diffraction technique. Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy were used to analyse the surface morphology and chemical composition of coatings. Microhardness test was applied to evaluate the hardness of the coatings. Finally, the electrochemical behaviour of the Ni–Fe alloy coatings was studied by a polarisation test in 10?wt-% H2SO4 solution. Results revealed that current density and plating bath composition had a strong effect on the characteristics of coatings. As the iron content of alloys produced increased, their corrosion resistance improved with the best corrosion resistivity being achieved at a metal ion ratio of 0.5 and applied current density of 2.5?A?dm?2.  相似文献   

2.
The effects of visible light and Cd2+ ion on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) were studied by scanning electron microscopy (SEM), synchrotron radiation X-ray diffraction (SR-XRD), and X-ray photoelectron spectroscopy (XPS). The results of bioleaching after 28 days showed that the copper dissolution increased by 4.96% with only visible light, the presence of Cd2+ alone exerted slight inhibition effect on chalcopyrite dissolution and the concentration of dissolved copper increased by 14.70% with visible light and 50 mg/L Cd2+. The results of chemical leaching showed that visible light can promote the circulation of iron. SEM results showed that Cd2+ promoted the attachment of A. ferrooxidans on chalcopyrite surface under visible light. SR-XRD and XPS results indicated that visible light and Cd2+ promoted chalcopyrite dissolution, but did not inhibit the formation of passivation. Finally, a model of synergistic catalysis mechanism of visible light and Cd2+ on chalcopyrite bioleaching was proposed.  相似文献   

3.
A study has been made of the mechanism of hypophosphite-reduced acidic electroless nickel (EN) plating. The influences of temperature, pH value, reagents of pH, complex reagents and stabilizer etc. have been studied. Lactic acid and malic acid are selected as complexing reagents. KIO3, HAc and ammonia are selected as stabilizer, buffer and pH regulator respectively. A new medium speed, long life-span and useful EN plating process has been developed.  相似文献   

4.
In this research, Ni–W/SiC composite coatings were electrodeposited from a plating bath containing suspension of SiC particles. The influences of SiC particle concentration in the plating bath on the composition of composite coatings were investigated. The surface morphology and composition of the composite coatings were characterised by scanning electron microscopy, energy dispersive X-ray measurements and X-ray diffraction analysis. The corrosion characteristics of Ni–W/SiC composite coatings were investigated by mass loss and electrochemical measurements, including open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarisation in a 3·5 wt-%NaCl solution. The results showed that the addition of SiC particle to the deposition bath of Ni–W significantly increased the corrosion resistance. The significant improvement in corrosion resistance observed for Ni–W/SiC composite coatings (17100 Ω cm2) compared to Ni–W (5619 Ω cm2) could have resulted from the microstructural differences.  相似文献   

5.
The Zn-Ni alloys have been electro-deposited from a non-cyanide alkaline bath containing tartrate as a complexing agent for Ni2+ ions. A water soluble polymer is used as a brightener. It was prepared by the reaction of epiclorohydrin with hexamethylenetetramine and mercaptobenzimidazol. Its effect on co-deposition process was examined. It was found that adding brightener in plating bath has a great effect on the cyclic voltammogram and galvanostatic measurements during the electrodeposition. Under the examined conditions, the electrodeposition of the alloys was of anomalous type. X-ray diffraction measurements revealed that the alloys consisted δ-phase (Ni3Zn22). The composition and morphology of the deposits were also studied by using scanning electron microscopy (SEM) and energy dispersive analysis X-ray (EDAX), respectively. The effect of optimum plating bath conditions on the corrosion resistance is studied by Tafel polarization.  相似文献   

6.
Effects of added rare earth elements (RE) in the acidic hypophosphite plating bath on the plating rate, bath stability and microstructure of the electroless nickel-phosphorus (EN) deposits were studied. The surface appearance and microstructure were examined under a reflection optical microscope and a scanning electron microscope equipped with an in-situ energy dispersive X-ray spectroscopy, which can evaluate the elemental analysis of deposits. It was demonstrated that the rare earth elements can decrease grain size and refine microstructure.The deposition rate of the Ni-P deposits was estimated by gravimetric, polarization and quartz crystal microbalance (QCM) methods. Results revealed that up to an optimum concentration of rare earth elements, the deposition rate increases. The stability test method was used to determine the stabilization effect of RE on the stability of the bath. It was found that the addition of RE significantly improved the Pd stability of the EN bath.  相似文献   

7.
The technologically important Cd0.5Ni0.5Se thin film has been developed by solution growth technique on non-conducting glass substrate in tartarate bath containing Cd+2, Ni+2 ions and sodium selenosulphate in an aqueous alkaline medium at room temperature. Various preparative conditions of the thin films are outlined. The films were characterized by X-ray diffraction, scanning electron microscope, optical absorption and electrical measurements. The X-ray diffraction study indicates that the film is polycrystalline in nature with hexagonal phase. Scanning electron micrograph shows that the film is homogeneous with well-defined grains. The films have high optical absorption coefficient. Thermoelectric power measurement shows p-type conduction mechanism.  相似文献   

8.
《金属精饰学会汇刊》2013,91(6):317-323
Abstract

Compositionally modulated alloy (CMA) coatings of Zn–Co were electrodeposited on to mild steel from an acid chloride bath containing thiamine hydrochloride, as an additive. Electroplating was carried out galvanostatically from a single bath containing Zn2+ and Co2+ ions. Gradual change in composition in each layer was effected by triangular current pulses, cycling between two cathode current densities. Compositionally modulated alloy coatings were developed under different conditions of cyclic cathode current density and number of layers, and their corrosion resistances were evaluated by potentiodynamic polarisation and electrochemical impedance spectroscopy. The formation of multilayer and corrosion mechanism was analysed using scanning electron microscopy. The corrosion resistances of CMA and monolithic alloy coatings were compared with that of the base metal. Compositionally modulated alloy coating at optimal configuration, represented as (Zn–Co)2·0/4·0/300, was found to exhibit ~80 times better corrosion resistance compared with monolithic (Zn–Co)3·0 alloy, deposited for the same length of time from the same bath. Improved corrosion resistance was attributed to the formation of n-type semiconductor film at the interface, supported by Mott–Schottky plots. Decrease in corrosion resistance at high degree of layering was found, and is due to lower relaxation time for redistribution of solutes in the diffusion double layer, during plating.  相似文献   

9.
Activated carbon obtained from Astragalus residue was chemically activated by KOH and modified with KMnO4. The samples were characterized by N2 adsorption, Fourier transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and Boehm titration. Accordingly, the original and modified carbon materials were used for the removal of Cd2+ from aqueous solution by batch adsorption experiments. Results showed that the contents of oxygen-containing functional groups increased, and MnO2 was nearly uniformly deposited on the surface of activated carbon after modification by KMnO4. The adsorption kinetics was described by pseudo-second order model. Langmuir model fitted the adsorption-isotherm experimental data of Cd2+ better than the Freundlich model. The maximum adsorption capacities of the activated carbon before and after modification for Cd2+ were 116.96 and 217.00 mg/g, respectively. KMnO4 considerably changed the physicochemical properties and surface texture of activated carbon and enhanced the adsorption capacity of activated carbon for Cd2+.  相似文献   

10.
The nickel–phosphorous (Ni–P) coating on carbon fiber was studied, using sodium hypophosphite as a reducing agent in alkaline medium. The effects of process parameters such as time, stabilizer concentrations, pH of the plating bath and plating bath's temperature on the electroless Ni–P coating efficiency were investigated. Structural study using X-ray diffraction (XRD) indicates that nickel deposition rate increases with increasing coating time and temperature. The nickel (Ni) recovery efficiency decreases with an increase of stabilizer concentration. From scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), it has been confirmed that the coating thickness and nickel content increase with an increase of coating time and temperature. The bath temperature of 25 °C, pH of 9, and stabilizer concentration of 25 g/L is good to get a good and uniform coating of Ni on carbon fiber. Thermal stability was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). From TGA study it is evident that the nickel coating increases thermal stability of the nickel-coated carbon fiber. IV (current vs voltage) measurement shows Ni-coated fiber is more conducting in nature.  相似文献   

11.
In this paper, a simple and environmentally friendly electroless plating solution of chloroauric acid (HAuCl4) and hydrogen peroxide (H2O2) for depositing gold film onto (3-aminopropyl)-trimethoxysilane (APTMS) -coated glass surface has been developed. APTMS as an adhesive reagent was used to attach the gold nanoparticles (AuNPs) onto the glass substrate. These AuNPs could be regarded as the preferential nucleation or catalytic sites for gold electroless reduction, which accelerated the reduction of Au3+ on the glass surface and effectively prevented the formation of gold metal in the bulk solution. During the gold plating process, H2O2 as the reducing agent was thermodynamically capable of reducing Au3+ ions from the HAuCl4 precursor to gold atoms, which deposited onto the glass surface and finally formed the continuous gold film. The resulting gold film was characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscope (AFM), respectively.  相似文献   

12.
Cr-P coatings were prepared by electrodeposition from trivalent chromium plating bath using malonic acid as complex. The influences of bath composition on the trivalent chromium electrodeposition process and deposited coating properties were studied. The effects of plating parameters such as current density, bath pH and plating time on structure and morphology of deposited coatings were investigated in detail. XRD, SEM, EDAX and XPS techniques were used to characterize the Cr-P deposited coatings. Results show that the composition, microstructure and surface morphology of the Cr-P coatings depend on bath composition and plating conditions including bath pH, current density, plating time, etc. Results of EDAX and XPS indicate that the deposited coatings contain Cr(s), Cr(III), phosphorus, oxygen and carbon. The optimum bath composition was obtained using malonic acid as complex and the mechanism of Cr-P electrodeposition was analyzed. The optimum plating parameters for good-quality chromium deposited coating are pH 2-3, current density 3-12 dm2, temperature 35 °C and Ti/IrO2 as anode. These results may be of great practical and theoretical significance for further improvement of trivalent chromium plating process.  相似文献   

13.
Cadmium (Cd) catalyzed Zn-Ni alloy plating has been accomplished galvanostatically on mild steel (MS) using gelatin and glycerol as additives. The effect of addition of Cd into Zn-Ni bath has been examined in terms of nickel (Ni) content and corrosion resistance of Zn-Ni-Cd ternary alloy coatings. The process and product of electrolysis under different concentrations of additives and Cd have been investigated by cyclic voltammetry (CV). The effects of current density (c.d.) on Ni content of the alloy have been studied by spectrophotometric method, supported by EDX analysis. The deposition has been carried out under different concentrations of Cd ranging from 0.004 to 0.1 M. The corrosion rates (CR) of Zn-Ni alloy coatings have been found to decrease drastically with addition of Cd. It has been also revealed that the CR of binary Zn-Ni alloy coatings decreased with the increase of Cd concentration only up to a certain optimal concentration, i.e., up to 0.02 M, and then remained unchanged. An effort to change the anomalous type of codeposition into normal one by changing the molar ratios of the metal ions, i.e. [Cd2+]/[Ni2+] as 0.01, 0.05 and 0.25 has remained futile. CV study demonstrated an important role of Cd in mutual depositions of Zn2+ and Ni2+ ions by its preferential adsorption, thus leading to the increased Ni content of the alloy. The bath composition and operating parameters have been optimized for deposition of bright and uniform Zn-Ni-Cd alloy coatings. Changes in the surface morphology and phase structure of Zn-Ni alloy coatings due to addition of Cd has been confirmed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) study respectively. Experimental investigations so as to identify the role of Cd in codeposition Zn-Ni alloy coatings have been carried out and the results are discussed.  相似文献   

14.
《金属精饰学会汇刊》2013,91(5):239-245
Abstract

Ni–Co/SiC composite coatings were produced by electrodeposition from a Watt's-type bath. The effect of current density and SiC concentration on the weight percentage of embedded particles was determined. Enhanced SiC incorporation was observed in the presence of small amount of cesium ions in the plating bath. It was attributed to increased adsorption of Co2+ and Ni2+ on the particles induced by Cs+ ions. Preferential adsorption of Cs+ was also observed. Validation of the Guglielmi model was confirmed for the codeposition process in the Ni–Co/SiC system. The incorporation of SiC within the alloy matrix resulted in the improvement of the microhardness of the deposits. Morphology and particle distribution in the deposits was studied by optical and electron (SEM, TEM) microscopy.  相似文献   

15.
目的 探究添加剂硫酸铈铵对铜基材上进行置换镀银的影响,提高对置换镀异相成核机理的认识。方法 应用循环伏安(CV)、塔菲尔曲线、交流阻抗(EIS)、电化学噪声(EPN)等电化学方法及扫描电子显微镜(SEM)技术对不同浓度的硫酸铈铵镀银液环境进行研究。结果 随着硫酸铈铵浓度的增加,Ag[(NH3)2]+络合物量增加,导致阴极还原阻力增大,同时Ce4+吸附在铜表面,阻碍了铜的氧化反应和银离子的还原反应,阳极与阴极交换电流密度分别下降33.9%和13.4%。当硫酸铈铵的质量浓度达到6 mg/L时,EIS中频区容抗弧直径显著增大,硫酸铈铵对置换镀银阳极的影响大于阴极。电化学噪声时域信号与SEM图像结合比较显示,具有大电位漂移的结晶EN对应于银沉积物松散且不均匀的结构,而具有小电位漂移的EN对应于致密层。基于小波变换的电化学噪声能量分布图(EDP)表明,随着硫酸铈铵浓度的增加,B、C区累积的相对能量减小,区域A的能量增加。结论 硫酸铈铵镀银液中,Ce4+在凹凸不平的铜层表面吸附,形成不同厚度的吸附层,来实现银层结构的致密性与平整性。由于硫酸铈铵对镀银阴极与阳极的阻碍作用,使得银沉积系统控制步骤为“扩散控制—混合控制—活化控制”逐步转变。  相似文献   

16.
《金属精饰学会汇刊》2013,91(3):162-167
Abstract

The electrochemical behaviour and composition of nickel sulphide coatings deposited on glassy carbon (GC) electrode by the successive ionic layer adsorption and reaction (SILAR) method using a nickel(II) ammonia complex and Na2S solutions have been studied in Ni2+ free background, Watts nickel plating and 0·05 M H2SO4 electrolytes by the cyclic voltammetry and X-ray photoelectron spectroscopy (XPS) methods. Analysis of XPS data suggests that the coating is a mixture of two sulphides where NiS dominates. In the Ni2+ free background solution at first the electrochemical reduction of the sulphur rich nickel sulphide to NiS occurs. After that the NiS to metallic Ni is reduced in the potential range of H2 evolution. During the cathodic reduction of the coating in Watts nickel plating electrolyte the sulphur is reduced in the potential range from 0·0 to ?0·4 V, while at the potential values <?0·5 V the sulphur rich nickel sulphide and NiS reduction in the H2 evolution range and Ni plating occur.  相似文献   

17.
《金属精饰学会汇刊》2013,91(4):215-219
Abstract

Electroless copper deposition is widely used for printed circuit applications. A new bath based on copper methane sulphonate replacing copper sulphate, EDTA and paraformaldehyde has been developed, which is very useful for plating on non-conductors and through hole plating in printed circuit manufacturing processes. The new bath has a higher rate of deposition of 3·3 μm h?1 than the conventional sulphate bath (with a rate of 1·5 μm h?1) and the bath stability and the quality of the deposits are very good. Scanning electron microscopy, X-ray diffraction and atomic force microscopy studies have been carried out and the crystallite size of the copper is measured to be 134 nm with a preferred orientation of 200 planes. The deposit obtained is pure copper and the surface roughness is of the order of 10 nm.  相似文献   

18.
The structure and composition of the chromium plating on Tin Free Steel (TFS) were investigated and analyzed with scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDS), X-ray photoelectron spectroscopy (XPS) and coulometric electrolysis method. The plating under investigation was manufactured by a two-step electrolytic reduction from a chromic acid solution. Experimental results showed that the plating on TFS had a two-layer structure. Moreover, two valences of chromium, three and zero, were detected in the plating and no hexavalent chromium was found in it. Correspondingly, all chromium in the outer layer was trivalent and existed as the form of Cr2O3 and Cr(OH)3, the content of which was about 6.62 mg/m2, while the pure metallic chromium was the only form of chromium found in the inner layer with the content of about 57.75 mg/m2. In addition, the amount of O existed as M-OH was twice as that of M-O in the above-mentioned hydrated chromium oxide layer.  相似文献   

19.
Ni-TiO2 nanocomposite coatings with various contents of TiO2 nanoparticles were prepared by electrodeposition in a Ni plating bath containing TiO2 nanoparticles to be codeposited. The influences of the TiO2 nanoparticle concentration in the plating bath, the current density and the stirring rate on the composition of nanocomposite coatings were investigated. The composition of coatings was studied by using energy dispersive X-ray system (EDX). The wear behavior of the pure Ni and Ni-TiO2 nanocomposite coatings were evaluated by a pin-on-disc tribometer. The corrosion performance of coatings in 0.5 M NaCl, 1 M NaOH and 1 M HNO3 as corrosive solutions was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods (EIS). The microhardness and wear resistance of the nanocomposite coatings increase with increasing of TiO2 nanoparticle content in the coating. With increasing of TiO2 nanoparticle content in the coating, the polarization resistance increases, the corrosion current decreases and the corrosion potential shifts to more positive values.  相似文献   

20.
Thick foils of nanostructured permalloy were electrodeposited by applying a current density of 100?mA?cm?2 for 48 hours. The bath contained nickel sulphate, iron sulphate, a complex agent, a grain refiner, a stress reducing agent, a buffer and a wetting agent. The bath pH was 3·8. Different parameters were controlled to get thick (approximately 860?µm), uniform permalloy coatings. To investigate the effect of electroplating time on the surface morphology, thickness and structure of foils, scanning electron microscopy, optical microscopy and X-ray diffraction were used. Chemical compositions of foils and the bath were investigated by quantometry and ultra violet–visible spectroscopy. The composition of the coatings was constant during the long period of electroplating, which was attributed to the bath stability. The cathode current efficiency of the electroplated permalloy foils increased slightly on increasing the plating time. Existence of chloride ions, complex agent and saccharin in the bath influenced efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号