首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
C_f/SiC复合材料与钛合金Ag-Cu-Ti-C_f复合钎焊   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ag-Cu-Ti-Cf(Cf:碳纤维)复合钎料作中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与钛合金,利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验检测接头力学性能.结果表明,钎焊时复合钎料中的钛与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti3SiC2,Ti5Si3和少量TiC化合物的混合反应层.复合钎料中的铜与钛合金中的钛发生互扩散,在连接层与钛合金界面形成不同成分的Cu-Ti化合物过渡层.钎焊后,形成碳纤维强化的致密复合连接层.碳纤维的加入缓解了接头的残余热应力,Cf/SiC/Ag-Cu-Ti-Cf/TC4接头抗剪强度明显高于Cf/SiC/Ag-Cu-Ti/TC4接头.  相似文献   

2.
以Ag-Cu-Ti-TiC复合钎料为中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与Ti合金.利用SEM、EDS和XRD分析接头的微观组织结构,利用剪切实验检测接头的力学性能.结果表明:钎焊时,借助液态钎料,复合钎料中的Ti与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti-Si-C、Ti-Si和少量TiC化合物的混合反应层;复合钎料中的Cu与Ti合金中的Ti发生互扩散,在连接层与Ti合金界面形成不同成分的Cu-Ti化合物过渡层;钎焊后,形成TiC颗粒强化的致密复合连接层,TiC的加入降低了接头的残余热应力,Cf/SiC/Ag-Cu-Ti-TiC/TC4接头的剪切强度明显高于Cf/SiC/Ag-Cu-Ti/TC4接头的.  相似文献   

3.
采用(Ti-Zr-Cu-Ni)+W复合钎料作为连接层,在连接温度930℃,保温时间5min的工艺参数下真空钎焊Cf/SiC复合材料与钛合金.利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验测试接头力学性能.结果表明,钎焊时复合钎料中的钛、锆与C/SiC复合材料反应,在Cf/SiC复合材料与连接层界面生成Ti3SiC2,Ti5Si3和少量TiC(ZrC)化合物的混合反应层,连接层的铜、镍与钛合金中的钛发生相互扩散,在连接层与钛合金界面形成Ti-Cu化合物过渡层.对钎焊接头进行900℃,保温60 min扩散处理后,连接层组织达到均一化,母材TC4合金侧过渡层增厚.扩散处理后接头强度为99 MPa,较钎焊接头强度65 MPa提高了52%.  相似文献   

4.
Ag-Cu-Tj复合钎料中加入Ti粉和石墨碳粉作为中间层,在适当的工艺条件下真空钎焊Cf/SiC复合材料与TCA.利用SEM,EDS,XRD分析接头微观组织,利用剪切试验检测接头力学性能.结果表明:钎焊时,复合钎料中的Ti与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成由Ti3、SiC2相、Ti5Si3相和少量TiC化合物组成的混合反应层.复合钎料中的Cu与Ti合金中的Ti发生互扩散,在连接层与Ti合金界面形成不同Ti含量的Cu-Ti化合物过渡层.钎焊后,连接层中Ti和石墨碳反应形成的TiC微粒均匀分布在复合连接层中,缓和了接头的热应力.当连接温度为910℃,保温时间为25 min时,可得到接头剪切强度为145 MPa.  相似文献   

5.
TiC增强Cf/SiC复合材料与钛合金钎焊接头工艺分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ag-Cu-Ti-(Ti+C)混合粉末作钎料,在适当的工艺参数下真空钎焊Cf/SiC复合材料与钛合金,利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验检测接头力学性能.结果表明,钎焊后钎料中的钛与Cf/SiC复合材料发生反应,接头中主要包括TiC,Ti3SiC2,Ti5Si3,Ag,TiCu,Ti3Cu4和Ti2Cu等反应产物,形成石墨与钛原位合成TiC强化的致密复合连接层.TiC的形成缓解了接头的残余热应力,并且提高了接头的高温性能.接头室温、500℃和800℃高温抗剪强度分别达到145,70,39 MPa,明显高于Cf/SiC/Ag-Cu-Ti/TC4钎焊接头.  相似文献   

6.
采用Ag-Cu-Ti活性钎料真空钎焊Cf/SiC与钛合金,利用扫描电镜、能谱仪和X射线衍射对钎焊接头组织结构进行分析,利用剪切试验检测接头力学性能.结果表明,接头反应产物主要有TiC,Ti3SiC2,Ti5Si3,Ag,TiCu,Ti3Cu4和Ti2Cu.在Cf/SiC复合材料附近形成TiC+ Ti3SiC2/Ti5S...  相似文献   

7.
为丰富SiC陶瓷钎焊所用钎料的设计思路,提出了一种泡沫Ti/AlSiMg新型复合钎料,通过Ti元素的溶入提高钎料与SiC陶瓷之间的界面结合力,利用泡沫Ti与Al基钎料之间的界面反应获得原位增强的钎缝,从而提升接头力学性能. 采用钎焊温度700 ℃、保温时间60 min和焊接压力10 MPa进行SiC陶瓷真空钎焊,利用光学显微镜、扫描电镜、能谱分析、X射线衍射、电子探针和万能试验机对接头组织、成分和性能进行分析,探索泡沫Ti/AlSiMg复合钎料在SiC陶瓷钎焊中的可用性. 结果表明,填充泡沫Ti/AlSiMg复合钎料所得接头结构为SiC/Al/Ti(Al,Si)3/Ti(Al,Si)3原位增强Ti基钎缝/ Ti(Al,Si)3/Al/SiC,断裂发生在铝合金界面层和SiC陶瓷之间,Ti元素的溶入提高了铝合金界面层与SiC陶瓷之间的界面结合力,接头抗剪强度达111 MPa.  相似文献   

8.
采用AgCuTi-Al混合粉末作为中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料和钛合金,利用扫描电镜,能谱仪和X射线衍射对接头的微观组织结构进行分析,利用剪切试验测定接头的力学性能.结果表明,在钎焊过程中,钎料中的钛与Cf/SiC复合材料中的基体SiC,碳纤维发生反应,在Cf/SiC复合材料侧形成了TiC,T...  相似文献   

9.
TiNiNb钎焊Cf/SiC与TC4接头组织结构   总被引:1,自引:0,他引:1       下载免费PDF全文
文中在钎焊温度980℃、钎焊时间15 min的条件下,采用Ti54.8Ni34.4Nb10.8(原子分数,%)共晶合金粉末真空钎焊Cf/SiC复合材料与TC4钛合金.用SEM,EDS及差热分析法(DTA)观察测定了钎料组织、成分及熔点,分析了钎焊接头的微观组织结构.结果表明,Ti54.8Ni34.4Nb10.8共晶钎料由Ti2Ni及Ti(Nb,Ni)化合物组成,实际熔点为935℃.钎焊过程中,Ti和Nb元素与复合材料反应形成TiC和NbC混合反应层;钎料中的镍与TC4中的镍发生互扩散,在TC4钛合金侧形成扩散层;连接层由弥散分布的Ti(Nb,Ni)化合物和Ti2Ni相组成.Cf/SiC与连接层界面为接头最薄弱环节,此处易形成裂纹.  相似文献   

10.
以Ag-28Cu和Ag-9Pd-9Ga两种银基钎料钎焊C/SiC复合材料和Al2O3陶瓷与Ti55钛合金接头,考察了钎料和钎焊工艺对接头焊缝组织形貌变化影响. 结果表明,采用Ag-28Cu钎料在850~920 ℃温度区间钎焊C/SiC-Ti55和Al2O3-Ti55接头均在陶瓷基体近钎焊界面区域开裂,原因为Ti55合金中Ti元素大量溶解扩散并与铜反应生成的大量脆性Cu-Ti化合物恶化焊缝塑性. Ag-9Pd-9Ga钎料则可以获得完整接头,钎焊过程中Pd,Ga元素在Ti55侧钎焊界面富集并与Ti元素反应生成PdTi, Ti2Ga, Ti4Pd化合物的反应层,有效抑制了元素往焊缝中的溶解扩散.  相似文献   

11.
In order to characterize the interfacial behavior of brazed joints and offer theoretical basis for the applications of TiZrCuNi-based composite fillers, Cf/SiC composite and TC4 were brazed by TiZrCuNi filler, and the microstructures of joints versus temperature and versus holding time were systematically studied in this paper. The mechanical properties of brazed joints were measured and analyzed. The results showed that Ti(Zr)C, Ti5Si3, Ti2Cu, TiNi, TiZrCu2, Ti2(Cu,Ni) and Ti(s,s) were the predominant compounds in the joints. Brazing temperature had a distinct effect on the microstructures of joints: with the increase of brazing temperature, the structure of brazed joints was reduced from four parts to three parts, and the wavy reaction layer became continuous and much thicker. While holding time had a similar but weaker effect on microstructures: with the extension of holding time, the reaction layer became thicker, but it was difficult to induce the decrease in the structural parts of joint. The thickness of reaction layer determined the mechanical properties of joints. The results were beneficial for the selection of reinforced phases and the design of composite fillers to obtain better mechanical performances. When the brazing temperature was 940 °C and the holding time was 25 min, the maximum shear strength of brazed joints attained a value of 143.2 MPa.  相似文献   

12.
Carbon fiber reinforced SiC (Cf/SiC) composite was successfully joined to TC4 with Ag-Al-Ti alloy powder by brazing. Microstructures of the brazed joints were investigated by scanning electron microscope, energy dispersive spectrometer, and x-ray diffraction. The mechanical properties of the brazed joints were measured by mechanical testing machine. The results showed that the brazed joint mainly consists of TiC, Ti3SiC2, Ti5Si3, Ag, TiAl, and Ti3Al reaction products. TiC + Ti3SiC2/Ti5Si3 + TiAl reaction layers are formed near Cf/SiC composite while TiAl/Ti3Al/Ti + Ti3Al reaction layers are formed near TC4. The thickness of reaction layers of the brazed joint increases with the increased brazing temperature or holding time. The maximum room temperature and 500 °C shear strengths of the joints brazed at brazing temperature 930 °C for holding time 20 min are 84 and 40 MPa, respectively.  相似文献   

13.
Abstract

C/SiC composites and Nb were vacuum brazed with the Ti39·4Ni39·4Nb21·2 alloy being the active filler metal. The mechanical properties of the filler material, the microstructure and the strength of brazing joints were investigated. The results showed that the filler TiNiNb alloy has a tensile strength of 860?MPa, an elongation of 51% and an elastic modulus of 78?GPa. Both Ti and Nb elements in the filler reacted with C/SiC during the brazing process, and a well bonded C/SiC–Nb joint was obtained. The ductile filler metal released the thermal stress in the joint. When the brazing was performed at 1220°C for 20?min, the shear strength of brazed joints reached 149, 120 and 73?MPa at 20, 600 and 800°C respectively.  相似文献   

14.
Alumina ceramic (α-Al2O3) was brazed to stainless steel (SUS304) using an Ag-Cu-Ti + W composite filler and a traditional active brazing filler alloy (CuSil-ABA). Then, the effects of the presence of W particles and of the brazing parameters on the microstructures and mechanical properties of the brazed joints were investigated. The maximum tensile strength of the joints obtained using Ag-Cu-Ti + W composite filler was 13.2 MPa, which is similar to that obtained using CuSil-ABA filler (13.5 MPa). When the joint was brazed at 930 °C for 30 min, the tensile strengths decreased for both kinds of fillers, although the strength was slightly higher for the Ag-Cu-Ti + W composite filler than for the Ag-Cu-Ti filler. The interfacial microstructure results show that the Ti reacts with W to form a Ti-W-O compound in the brazing alloy. When there are more W particles in the brazing alloy, the thickness of the Ti X O Y reaction layer near the alumina ceramic decreases. Moreover, W particles added to the brazing alloy can reduce the coefficient of thermal expansion of the brazing alloy, which results in lower residual stress between the Al2O3 and SUS304 in the brazing joints and thus yields higher tensile strengths as compared to those obtained using the CuSil-ABA brazing alloy.  相似文献   

15.
Ag-Cu+WC复合钎料钎焊ZrO2陶瓷和TC4合金   总被引:1,自引:0,他引:1       下载免费PDF全文
采用新型Ag-Cu+WC复合钎料进行ZrO2陶瓷和TC4合金钎焊连接,探究了接头界面组织及形成机制,分析了钎焊温度对接头界面结构和力学性能的影响. 结果表明,接头界面典型结构为ZrO2/TiO+Cu3Ti3O/TiCu+TiC+W+Ag(s,s)+Cu(s,s)/TiCu2/TiCu/Ti2Cu/TC4. 钎焊过程中,WC颗粒与Ti发生反应,原位生成TiC和W增强相,为Ti-Cu金属间化合物、Ag基和Cu基固溶体提供了形核质点,同时抑制了脆性Ti-Cu金属间化合物的生长,优化了接头的微观组织和力学性能. 随钎焊温度的升高,接头反应层的厚度逐渐增加,WC颗粒与Ti的反应程度增强. 当钎焊温度890 ℃、保温10 min时,复合钎料所得接头抗剪强度达到最高值82.1 MPa,对比Ag-Cu钎料所得接头抗剪强度提高了57.3%.  相似文献   

16.
Cf/SiC ceramic composites have been brazed to Nimonic alloys using TiCuAg filler metal. In order to improve wettability and to provide compatibility between ceramic and metal, the Cf/SiC surface was metallized through the deposition of a chromium layer. Subsequent heat treatments were carried out to develop intermediate layers of chromium carbides. Excellent wetting of both the composite ceramic and the metal from the filler metal is observed in the fabricated joints. Shear tests show that failure occurs always within the ceramic material and not at the joint. In the filler region depletion of Ti and formation of Ag and Cu rich regions are observed. At the Cf/SiC-filler interface a layered structure of the filler metallic elements is observed. Titanium interacts with the SiC matrix to form carbides and silicides.  相似文献   

17.
Abstract

ZrB2–SiC ceramic composite was brazed by using TiZrNiCu active filler metal. The microstructure and interfacial phenomena of the joints were analysed by means of SEM, energy dispersive X-ray spectroscopy and X-ray diffraction. The joining effect was evaluated by shear strength. The results showed that the reaction products of the ZrB2–SiC ceramic composite joint were TiC, ZrC, Ti5Si3, Zr2Si, Zr(s,s) and (Ti, Zr)2 (Ni, Cu), and the microstructure was separately ZrB2–SiC/Zr(s,s)/Ti5Si3+Zr2Si+TiC+ZrC+(Ti,Zr)2(Ni,Cu)/Zr(s,s)/ZrB2–SiC. A conceptual interface evolution model was established to explain the interface evolution mechanism. The maximum shear strength of the brazed joints was 143·5 MPa at the brazing temperature T of 920°C and the holding time t of 10 min.  相似文献   

18.
Abstract

Cf/SiC composite was brazed to Ti alloy using interlayer of Ag–Cu–Ti–W mixed powder. The effects of W content and brazing parameters on the microstructure and properties of the brazed joints were investigated. The results show that W grains mainly distribute in Ag phase in the brazing layer and provide the effects of reinforcement and lowering residual thermal stress on the joint. The room temperature and 500°C shear strengths of the joints performed at 500°C for 30 min with Ag–Cu–Ti–50W (vol.-%) are remarkably higher than the optimal strengths of the joints brazed with Ag–Cu–Ti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号