首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
对化学成分(质量分数,%)为Al-11.8Zn-2.9Mg-2.8Cu-1.17Li的合金分别在110℃、120℃、130℃、140℃、150℃、160℃和180℃进行人工时效,并对部分试样进行透射电镜观察。结果表明,适量Li对高合金含量的Al-Zn-Mg-Cu合金的沉淀相形核影响不大,但可抑制其长大。高的合金含量,可以使合金在时效过程中析出高密度细小的沉淀相,从而达到很高的硬度,但不能完全固溶于基体的合金元素在晶界形成粗大的第二相。  相似文献   

2.
Nd对Mg-Zn-Y合金显微组织与力学性能的影响   总被引:1,自引:0,他引:1  
采用金相显微镜、电子探针、扫描电镜、X-射线衍射仪及电子万能拉伸试验机等设备分析研究了Nd对Mg-Zn-Y合金的显微组织和力学性能的影响。显微组织观察表明:稀土Nd能够明显起到晶粒细化的作用,改善了实验合金的显微组织。力学性能测试表明:由于稀土Nd的添加提高了合金的力学性能,并且当Nd添加量为0.5%时,合金的综合力学性能最佳,抗拉强度达到207MPa,伸长率达到16.9%,硬度达到52.8HV。  相似文献   

3.
通过蠕变试验、扫描电子显微镜和透射电子显微镜分析,对比研究了 170℃下,蠕变应力(200 MPa、225 MPa、250 MPa、275 MPa、300 MPa)对峰时效态Al-Cu-Mg-Ag合金蠕变行为的影响.结果表明:合金的稳态蠕变速率ε对应力状态非常敏感,它们之间的关系符合幂指数关系:ε=e-64.81σ8....  相似文献   

4.
张路 《铸造技术》2014,(10):2200-2202
对Ag-In-Cd合金的压缩蠕变行为进行研究,考虑到该合金作为反应堆控制棒的材料,实验温度选择300400℃,压应力选择11400℃,压应力选择1123 MPa。在实验条件下,该合金lnε觶与1/T具有线性相关性、n分别为2.89、4.08和5.76,Qa分别为68.0、103.6和131.5 kJ/mol、蠕变过程产生大量层错。  相似文献   

5.
通过室温、高温拉伸、Gleeble热模拟试验,光学显微镜(OM)及高分辨透射电镜(HR-TEM)观察,研究了中温低合金(CrMo、Cr-Mo+微合金)耐热钢的拉伸、蠕变行为及其微观机理。结果表明,高温270℃下,低合金耐热钢拉伸应力-应变曲线的屈服平台消失,形成连续光滑的应变强化曲线。相比于C-Mn钢,低合金耐热钢的高温强度明显升高。高温350℃下,相比于C-Mn钢,低合金耐热钢的蠕变速率明显降低,其中Cr-Mo+微合金钢的蠕变速率最小。微合金元素形成的强碳化物抑制了Cr、Mo合金元素从基体中析出,Cr-Mo+微合金钢的蠕变抗力得到提高。  相似文献   

6.
采用高温蠕变装置,研究了Mg-6Al-1Nd-1.5Gd合金在150、175、200℃以及50、70、90 MPa条件下的高温压缩蠕变行为,分析合金在高温蠕变过程中的蠕变机制。结果表明,Mg-6Al-1Nd-1.5Gd合金的平均应力指数及蠕变激活能分别为4.64和73.87kJ/mol,其主要蠕变机制是由位错攀移和晶界扩散共同作用,合金的蠕变本构方程为:ε=1.877×10-8σ4.641exp[-73 865/(RT)];合金在高温蠕变过程中,微观组织中的位错密度逐渐增大,出现位错缠结及位错堆积,合金蠕变后的晶粒变得粗大,金属间化合物Al3Nd和Al3Gd在晶界上出现偏聚。  相似文献   

7.
采用自制的实验装置研究了铸态Mg-4Al-1RE-1Ca-0.2Sr(AECJ411002)合金在温度为125~175 ℃和压力为88~112 MPa范围内的压蠕变行为.结果表明,随温度和应力升高,合金的压蠕变量增大,稳态蠕变速率的对数分别与应力的对数和温度的倒数呈较好的线性关系,稳态蠕变速率符合半经验公式.在不同的温度下,应力指数n相近,平均值为6.19;不同的应力下,表观激活能Qa相差不大,平均值为39.05 kJ/mol,材料的结构常数A为4.18×10-14,稳态蠕变速率由位错攀移控制.AECJ411002合金中沿着晶界分布的Al2Ca相和Al4Sr相具有很高的热稳定性,能提高合金的抗蠕变性能.  相似文献   

8.
两相共晶NiAl-9Mo合金的蠕变行为   总被引:8,自引:0,他引:8  
研究了热等静压态的NiAl-9Mo合金在850-950℃和50-100 MPa下的蠕变行为.在试验应力和温度下,该合金蠕变曲线呈现出较短的减速阶段和较长的稳态蠕变阶段;其稳态蠕变速率可用幂指数蠕变方程来描述,应力指数值为4.75±0.25,表观激活能为 410.5±4.5kJ/mol.加速蠕变阶段蠕变速率的增加是由于裂纹的形成和扩展,且其断裂数据遵循Monkman-Grant规律.蠕变断口呈现出塑性断裂和沿晶蠕变断裂的混合特征,但后者比例较大,同一温度下随着应力的增大,沿晶断裂的比例呈现下降的趋势.  相似文献   

9.
采用自制的压蠕变试验装置研究了锆对ZA2 7合金压蠕变行为的影响。结果表明 ,在试验温度 2 0℃~ 1 60℃和压应力 50MPa~ 1 37 5MPa范围内 ,ZA2 7 Zr和ZA2 7合金压蠕变第一阶段的变形量和稳态蠕变速率随着温度和应力的增高而增大 ,但在 1 0 0℃以下时 ,ZA2 7 Zr合金第一阶段的蠕变量及稳态蠕变速率低于ZA2 7合金 ,合金的压蠕变抗力高于ZA2 7合金 ,在 1 60℃则相反。合金的压蠕变行为可用等式 :lnt=C -nlnσ +Q RT表达 ,其中 ,材料结构常数C不同导致两种合金的蠕变行为不同。ZA2 7 Zr合金的应力指数n和蠕变激活能Q分别为 3 63和 87 32kJ·mol-1 ,ZA2 7合金的应力指数和蠕变激活能分别为 3 46和 81 0 9kJ·mol-1 。表明Zr的加入并不影响ZA2 7合金的蠕变机制 ,均由锌的点阵自扩散和位错的攀移控制  相似文献   

10.
利用光学显微镜、扫描电镜及XRD物相分析研究稀土元素Nd对过共晶Mg-3%Si合金中Mg 2 Si粒子的变质作用与机理。结果表明:随着Nd含量的增加,初生Mg 2 Si粒子的形貌由粗大的树枝状转变为细小的多面体状。当Nd含量增至1.0%时,初生Mg 2 Si粒子被完全细化,尺寸约为10μm。然而,随着Nd含量的进一步增加,初生Mg 2 Si粒子反而又出现了粗化的现象。其变质机理主要是Nd元素富集于初生Mg 2 Si相的生长表面并抑制其优先生长晶向的生长,即中毒效应。当Nd含量超过3.0%时,初生Mg 2 Si粒子中的白色粒子由NdMg 2相转变为NdSi和NdSi 2化合物。因此,适量的Nd元素可以有效地细化初生Mg 2 Si粒子。  相似文献   

11.
采用透射电镜、电子探针、拉伸和硬度测试等方法对铸态Al-6Mg-0.2Sc-0.15Zr(质量分数,%)合金在等温退火过程中的硬化行为进行了研究.结果表明,退火过程中Mg分布的变化对合金强度影响不大,细小、弥散的Al3(Sc,Zr)沉淀相的析出产生了显著的沉淀强化作用.合金在300℃下退火,Al3(Sc,Zr)沉淀相粗...  相似文献   

12.
王航  丁向东  肖林  孙军 《金属学报》2005,41(5):517-522
研究了冷变形Zr-4合金在双轴比例和非比例加载下的循环变形行为,结果表明:当循环应变幅较低时,Zr-4合金表现为循环初始硬化随后饱和的特征;随着应变幅提高,初期硬化后,表现为连续循环软化特征;高应变幅下,初期硬化消失,表现为急剧的循环软化.相同等效应变幅下,非比例加载下的Mises循环等效应力明显高于比例加载,表现为非比例附加硬化现象; 相位角30°时,非比例附加硬化程度最高.非比例加载下疲劳寿命低于比例加载.双轴疲劳变形亚结构TEM观察表明:当加载方式由比例加载转化为非比例加载时,疲劳位错结构由拉长的位错条带向位错缠结和位错胞转化,材料内部各向同性强化机理加强是Zr-4合金非比例潜在硬化的原因.  相似文献   

13.
The fracture mechanism of deformation-aged Al-Li alloy was approached by investigatingthe influence of prior cold deformation on the precipitation kinetics as well as the behavioursof work hardening and fracture for Al-2.73Li alloy.The experimental results show that thework hardening rate and the strength are increased and the ductility is decreased by prior colddeformation.The decrease in ductility is mainly due to the cell dislocaton substructure distrib-uted inhomogeneously and the hardening of precipitate free zones at grain boundaries causedby prior cold deformation.The failure mode in the alloy is a mixed integranular andtransgranular one.The tendency of intergranular fracture is intensified through thedeformation-aging.The mechanisms of intergranular failure in the alloy are different undervarious deformation-aging treatments.  相似文献   

14.
预形变和时效Al-2.73Li合金的断裂机制SCIEI   总被引:2,自引:0,他引:2  
本文研究了预先冷形变对Al-2.73Li合金的机械性能和断裂行为的影响。试验结果表明,预先冷形变使合金的加工硬化率和强度提高,相应损失部分塑性。预先冷形变造成不均匀分布的胞状位错结构及晶界无沉淀带加工硬化,乃是导致塑性下降的主要原因。合金的断裂方式为沿晶和穿晶混合型。预形变后时效使沿晶断裂倾向增大。最后探讨了其断裂机制。  相似文献   

15.
Al-Cu-Mg-Ag耐热铝合金高温蠕变行为   总被引:2,自引:0,他引:2  
在100-210℃和150-300 MPa的条件下,研究了Al 5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr耐热铝合金的蠕变行为,探讨了时效状态对合金高温性能的影响.结果表明:在相同蠕变条件下,欠时效态合金的稳态蠕变速率远远低于峰时效态合金.在210℃/200 MPa 下,欠时效态合金的蠕变断裂时间为7...  相似文献   

16.
1.IntroductionItiswellknownthatalpha-betatitaniumalloysareusuallyprocessedbyconventionalforging,i.e.,materialsareheatedandprocessedat30--50"Cbelowbetatransustemper-ature.Theconventionallyforgedtitaniumalloyshaveanequiaxedmicrostructure.Ingeneral,equiaxedmicrostructuresshowahigherductilityandhigherstrength,buthavelowerhigh--temperatureproperties,lowerresistancetofatiguecrackpropagationandlowerfracturetoughness[1].Inthelate50s,anewforgingmethod,calledbetaforging,waspro-posedbyCroan[2].Itbroket…  相似文献   

17.
钛合金高温形变强韧化机理   总被引:15,自引:0,他引:15  
详细研究并讨论了钛合金高温形变强韧化机理。结果表明,三态组织中少量等轴α相与基体β相没有固定的位向关系,位错容易找到可开动的滑移面,对变形起着协调作用,因而合金具有较高的塑性;大量网篮交织的条状α,不仅增加了相界面,提高了合金的强度与抗蠕变能力,而且不断改变裂纹扩展方向,导致裂纹路径曲线、分枝多,断裂韧性好。新的变形理论适用于α,近α,(α+β)和近β型钛合金。  相似文献   

18.
TiAl合金PST晶体高温蠕变特性及蠕变失稳机制   总被引:4,自引:0,他引:4  
对三种取向的TiAl合金PST晶体在800℃条件下的压缩蠕变曲线进行了测试,并对其蠕变失稳机制进行了研究.研究结果表明,PST晶体的蠕变性能强烈地取决于片层界面与外力轴的夹角;三种取向的PST晶体试样在蠕变第三阶段表现出不同的蠕变失稳方式;对于=90°的试样,在本蠕变条件下过早地出现蠕变第三阶段,这与该取向试样α2片层在蠕变过程中发生球化以及剪切带的产生有关.  相似文献   

19.
Ti—47Al—2W—0.5Si抗蠕变合金的高温力学行为和变形机制   总被引:2,自引:0,他引:2  
研究了Ti-47Al-2W-0.5Si铸造合金的力学行为和变形机制。结果表明,合金的室温-高温屈服强度和650℃蠕变强度都超过LN713LC镍基高温合金的比屈服强度和比蠕变强度,表现出优异的中温力学性能。在蠕变过程中,随着载荷和温度的增加,合金的最小蠕变速率随之增大。可用蠕变方程εm=A(σ/E)^10exP(-420/RT)来描述。位错在界面处繁殖,并在α2/γ层片中缠结和塞积,导致合金的初始蠕变应变速率降低。当位错运动受阻时,可以通过孪生方式使内应力得到缓解。在蠕变第一阶段就可以发生孪生和剪切现象。在高温应力作用下,α2片层发生粗化和相转变。此外,还对合金的实际应用效果进行了考核,并说明了该合金的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号