首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
为了考察离子液体对钛基Pb O2电极电化学性能的影响,将离子液体1-乙基-3-甲基-咪唑四氟硼酸盐([Emim]BF4)添加到Pb(NO3)2混合电积溶液中,通过阳极电氧化沉积制备得到钛基β-Pb O2形稳阳极Ti/β-Pb O2,对其电催化氧化活性及稳定性进行了考察,并与采用F-和十二烷基磺酸钠(SDS)为电积溶液添加剂制备的带有中间层的电极Ti/Sn O2-Sb2O3/β-Pb O2进行了对比。结果表明,离子液体修饰电极材料的电催化活性和稳定性相比后者均有明显提高。对电极表面的SEM与XRD表征分析表明,添加离子液体制备得到的电极Ti/β-Pb O2活性层表面致密平整、结晶大小均匀、择优结晶取向发生明显变化。电化学循环伏安实验结果显示,电极Ti/β-Pb O2的析氧过电位(1.7 V)比Ti/Sn O2-Sb2O3/β-Pb O2(1.6 V)稍高。  相似文献   

2.
在化学镀液中加入添加物,可以改变离子膜电极表面形貌.试验研究了加入F-和Fe2 两种添加物后,βPbO2镀层形貌特征的变化.试验结果证明,F-能减缓沉积过程中Pb2 的释放速率,使得βPbO2镀层颗粒细小、均匀、致密;加入Fe2 镀层比加入F-效果更好,因为超声波搅拌,Pb和Fe的分布都比较均匀,是理想的镀层沉积形式.  相似文献   

3.
钛基PbO2电极上苯酚的电化学氧化   总被引:2,自引:0,他引:2  
以Ti为基体,通过热分解Pb(NO3)2水溶液制备了Ti/PbO2电极以及含有SnO2+Sb2O3中间层的Ti/SnO2+Sb2O3/PbO2电极,并将所制备的电极应用于模拟苯酚废水的电化学氧化降解。结果表明:含有SnO2+Sb2O3中间层的Ti/SnO2+Sb2O3/PbO2电极在相同的操作电流密度下,槽电压低于未加中间层的Ti/PbO2电极。以聚合前驱体制得的Ti/SnO2+Sb2O3/PbO2电极为阳极时,在25℃,电流密度15mA/cm^2下,恒电流电解浓度为2.13×10^-3mol/L的模拟苯酚废水,电解3.0h后,苯酚浓度降为1.67×10^-5mol/L,苯酚去除率达99.2%;电解6.5h后,COD下降率为84.3%。阳极寿命快速检测实验结果表明,添加锡锑中间层后的Ti/SnO2+Sb2O3/PbO2电极,其寿命显著提高。  相似文献   

4.
Ti/PbO2电极的研制   总被引:9,自引:0,他引:9  
研究了工艺参数对制备PbO2/Ti电极性能的影响,通过SEM、XRD和强化寿命结果分析,得出了制备Pbo2/Ti电极的最佳工艺条件即镀β-PbO2的最佳电流密度3A/dm2,镀液温度60℃。试验结果表明,在H2SO4、HNO3介质中,对析氧反应而言,Ti/PbO2电极具有好的催化活性和高的阳极电位;在150g/LH2SO4、60℃、200A/dm2条件下,强化寿命最高达1309h。  相似文献   

5.
采用热分解法制备了以钛为基体、SnO2+Sb2O3为中间层、RuO2+PbO2为活性层的Ti/SnO2+Sb2O3/RuO2+PbO2电极.应用极化曲线法和循环伏安法测定不同RuO2含量下电极在25℃,0.5 mol/LH2SO4溶液中的电催化活性.实验结果表明,随着RuO2含量的增加,相同电极电位下的电流密度增大;相同的扫描速率下,RuO2含量增加,电极的伏安电荷值增加,即电极的电催化活性随着RuO2含量的增加而增加.在1.0mol/LH2SO4溶液中,60℃、电流密度为2.0A/cm2条件下,电极寿命快速检测结果表明,Ti/SnO2+Sb2O3/RuO2+PbO2电极的寿命随RuO2含量的增加而下降;但与不加有SnO2+Sb2O3中间层的Ti/RuO2+PbO2电极相比,电极寿命则显著增加.RuO2的含量还对电极的表面形貌有明显的影响.  相似文献   

6.
Pb3O4层引入对钛基PbO2电极强化寿命的影响   总被引:1,自引:0,他引:1  
在SnO2-Sb中间层的基础上,通过热分解引入Pb3O4层以提高二氧化铅层与钛基体的结合力,进而达到提高钛基二氧化铅电极寿命的目的。结果表明,Pb3O4层的引入使得钛基二氧化铅电极的强化测试寿命由100.5h提高到970h。根据XRF、XRD及SEM测试结果,详细分析了由于Pb3O4层的引入而提高PbO2电极强化寿命的原因。  相似文献   

7.
离子膜上化学镀βPbO2   总被引:2,自引:1,他引:2  
简要介绍了复合膜电极的优点,详细介绍了在Nafion膜上直接化学镀βPbO2催化层的过程.结果表明,用此方法镀制的二氧化铅过程简单、好控制,颗粒细、结合致密、粘附牢固.经X光衍射知,βPbO2质量分数超过95%,颗粒虽不均匀,但粒度小,比表面积大.从不同时间的阳极极化曲线知,所得镀层稳定、耐腐蚀.  相似文献   

8.
RuO2含量对Ti/SnO2+Sb2O3/RuO2+PbO2阳极性台皂的影响   总被引:1,自引:1,他引:1  
采用热分解法制备了以钛为基体、SnO2+Sb2O3为中间层、RuO2+PbO2为活性层的Ti/SnO2+Sb2O3/RuO2+PbO2电极。应用极化曲线法和循环伏安法测定不同RuO2含量下电极在25℃,0.5mol/LH2SO4溶液中的电催化活性。实验结果表明,随着RuO2含量的增加,相同电极电位下的电流密度增大;相同的扫描速率下,RuO2含量增加,电极的伏安电荷值增加,即电极的电催化活性随着RuO2含量的增加而增加。在1.0mol/LH2SO4溶液中,60℃、电流密度为2.0A/cm^2条件下,电极寿命快速检测结果表明,Ti/SnO2+Sb2O3/RuO2+PbO2电极的寿命随RuO2含量的增加而下降;但与不加有SnO2+Sb2O3中间层的Ti/RuO2+PbO2电极相比,电极寿命则显著增加。RuO2的含量还对电极的表面形貌有明显的影响。  相似文献   

9.
稀土改性Ti/Sb-SnO2/β-PbO2电极的制备与性能   总被引:1,自引:0,他引:1  
用电沉积法制备钛基二氧化铅电极,以Nd(NO3)3、Ce(NO3)3、Gd2O3和Sm2O3分别对电极进行改性研究。采用XRD、SEM、EDS等方法考察稀土改性对PbO2电极物相结构、表面形貌、元素组成的影响规律。XRD分析表明,改性电极的表面晶型没有改变,并且PbO2表层的结晶纯度提高;SEM结果显示,改性电极的表面形貌有不同程度的改变;EDS结果表明,添加的稀土可能进入了PbO2表层内部。苯酚降解试验和强化寿命测试说明改性PbO2电极具有更好的电催化活性和稳定性。  相似文献   

10.
研究了以乙二醇与柠檬酸反应制得的乙二醇柠檬酸酯溶液、乙二醇、乙醇、正丁醇为前驱体溶剂制备的锡锑中间层对Ti/SnO2 Sb2O3/PbO2电极性能的影响,用XRD、ESEM对不同前驱体制备的锡锑中间层和对应的二氧化铅活性层进行了表征,并用极化曲线法和阳极寿命快速检测法比较了不同前驱体对Ti/SnO2 Sb2O3/PbO2电极的阳极寿命和在1.0mol/L硫酸溶液中的电催化活性的影响。结果表明,不同前驱体溶剂对锡锑中间层的结构和形貌有着显著的影响;以乙二醇与柠檬酸反应制得的聚合前驱体为溶剂制备的锡锑中间层表面致密,锡锑含量相对较高,该中间层的均匀度和平整度明显好于其它3种前驱体。由聚合前驱体中间层制得的Ti/SnO2 Sb2O3/PbO2电极的使用寿命明显提高,但不同中间层前驱体对电极的电催化活性影响不大。  相似文献   

11.
新型二氧化铅电极的制备及其性能研究   总被引:3,自引:2,他引:1  
孙凤梅  曾明敏 《表面技术》2010,39(5):30-31,87
用电沉积方法制备了Ti/SnO2+Sb2O3/PbO2,Ti/SnO2+Sb2O3/Bi-PbO2,Ti/PbO2三种二氧化铅电极,采用加速寿命试验对比了电极的寿命,采用扫描电镜表征了电极的表面形貌,并将所制备的电极用于处理苯酚溶液和含铜离子的溶液,分析了电解处理的效果.结果表明:未掺铋二氧化铅电极的加速寿命最长,且其处理的含铜废水可达国家排放标准,但掺铋电极的电催化性能更高.  相似文献   

12.
采用旋涂的方法在不同基底上制备离子液体(1-烯丙基-3-己基咪唑六氟磷酸盐)薄膜,用PF—PM动静摩擦试验机评价了薄膜的摩擦学性能。羟基化基底和乙烯基化基底上制备的薄膜同钢球对摩时,具有很低的摩擦因数和很长的耐磨寿命,该薄膜有可能作为低载荷下的减摩抗磨防护涂层。  相似文献   

13.
影响二氧化铅镀层质量的原因   总被引:2,自引:1,他引:2  
双性极片电镀二氧化铅在国内是一项较新的电镀工艺,本文详细分析了该工艺生产实践中出现的各种质量问题,并针对其生产原因提出了相应的解决措施。  相似文献   

14.
卷绕铅酸电池泡沫铅负极电化学行为的研究   总被引:1,自引:0,他引:1  
以泡沫铅作为负极集流体制备了卷绕VRLA电池.采用计时电流法、循环伏安曲线、电化学阻抗谱和充放电实验研究了泡沫铅负极的电化学行为,结果表明泡沫铅负极的真实表面积比铅箔负极的大,因此泡沫铅负极具有较低的过电势,并且不论是在怎样的放电状态下,泡沫铅负极的电化学反应电阻较小;与铅箔负极相比,在10、5和2小时率放电状态下,泡沫铅负极的质量比容量分别增加25.9%,30.0%和48.2%.此外,SEM观察显示,泡沫铅负极表面活性物质为更加细小的晶体颗粒和具有更高的孔率.  相似文献   

15.
目的 改善甘油作为润滑剂的摩擦学性能。方法 合成一种含脲基新型无卤素的功能化咪唑离子液体(M-16-DOSS)并作为甘油的润滑添加剂。通过核磁共振和高分辨四级杆飞行时间质谱对M-16-DOSS的结构进行表征。采用同步热分析仪测试甘油润滑体系的热稳定性。采用SRV-IV微动摩擦磨损试验机评价了甘油润滑体系的摩擦磨损性能,通过三维轮廓仪对磨损体积和磨斑形貌进行了表征。采用EDS和XPS分析了磨斑表面元素和元素化学形态。结果 合成的功能化咪唑盐离子液体结构正确、纯度合格。M-16-DOSS与甘油具有良好的相容性且能够提高甘油的热稳定性。M-16-DOSS作为甘油的润滑添加剂可显著改善甘油的摩擦学性能,添加量达到1.5%时,摩擦系数下降到0.1,磨损体积下降80%。结论 在摩擦过程中发生了摩擦化学反应,通过硫氮的协同作用与铁和氧等元素形成了化学反应保护膜,有效地阻止了摩擦副之间的直接接触和碰撞,提高了甘油的减摩抗磨性能。  相似文献   

16.
利用酸碱中和法合成了一系列季铵盐和季膦盐氨基酸离子液体(AAILs)润滑剂,以合成润滑油聚α-烯烃(PAO10)和传统含氟离子液体1-丁基-3-甲基咪唑双三氟甲烷磺酰亚胺盐(L-F104)作为参照样,评价了粘温性能、热稳定性以及作为不同摩擦副润滑剂的润滑性能,探索了阴、阳离子结构对其物理化学性质和摩擦学性能的影响规律。结果表明:季膦盐氨基酸离子液体的粘温性能和热稳定性明显优于季铵盐氨基酸离子液体;这些离子液体中,阴离子上硫元素的引入可显著提高其粘温性能,而芳环的引入却使其粘温性能明显下降。结构对其摩擦学性能的影响规律与摩擦副种类有关:当钢/钢、钢/铜摩擦副作为润滑剂时,在常温或高温条件下,均具有优异的减摩抗磨性能;当钢/铝摩擦副作为润滑剂时,只有含芳基的季铵盐氨基酸离子液体具有优于PAO 10和L-F104减摩抗磨性能。  相似文献   

17.
为了用室温离子液体替代氯化物高温熔盐电解质实现乏燃料干法后处理中铀、钚等锕系元素离子还原,使用镧系元素来模拟锕系元素并通过循环伏安法研究La(Ⅲ)在离子液体N-甲基-N-丙基哌啶双(三氟甲基磺酰)亚胺(MPPi NTf2)中的电化学行为。结果表明:La(Ⅲ)在MPPi NTf2中铂电极上的还原反应为不可逆过程,其在MPPi NTf2中的扩散系数为2.79×10-7cm2/s(323 K),反应活化能为99.4 k J/mol。电沉积实验表明,在离子液体MPPi NTf2中采用恒电位电解法(–2.9 V(vs.Pd))实现了金属镧的沉积。  相似文献   

18.
目的研究离子液体作添加剂时对基础润滑剂成膜能力和摩擦磨损性能的影响。方法选取聚α烯烃(PAO8)和锂基脂作为基础润滑剂,用季膦盐油酸离子液体作为添加剂,用UMT-3型多功能摩擦磨损试验机(UMT)进行实验,并对试验后的试样表面进行SEM分析。同时用光干涉点接触润滑油膜厚度测量装置测量其膜厚,通过对比基础润滑剂与添加离子液体后的摩擦系数、膜厚和磨斑,评价离子液体添加剂对基础润滑剂摩擦润滑性能的影响。结果相比于基础油和基础脂,离子液体作添加剂可以有效地降低摩擦磨损。含有离子液体添加剂的润滑剂有更高的油膜厚度,在高载荷工况下更明显。添加离子液体可以有效减轻基础油的乏油程度。结论离子液体添加剂可以有效减小摩擦磨损,提高润滑性能。  相似文献   

19.
目的提高Pb O_2/Ti的使用寿命、对目标反应物的电氧化催化活性及选择性。方法以覆有Sn O_2+Sb_2O_3的Ti网为阳极,分别在Pb(NO_3)_2、Na F混合溶液及Pb(NO_3)_2、Na F、Bi(NO_3)_3组成的掺Bi混合溶液中,在电沉积液p H=2、60℃、电沉积电流密度为0.04 A/cm~2的条件下,进行常规电沉积及超声电沉积1 h,制备出Pb O_2/Sn O_2+Sb_2O_3/Ti,Bi-Pb O_2/Sn O_2+Sb_2O_3/Ti,Pb O_2(ultrasonic)/Sn O_2+Sb_2O_3/Ti,Bi-Pb O_2(ultrasonic)/Sn O_2+Sb_2O_3/Ti 4类二氧化铅电极。在硫酸溶液中测定其加速寿命,用稳态极化曲线分析电催化性及选择性,以2-氯苯酚的电氧化降解反应为模型反应,考察电解2-氯苯酚废水的处理效果,用X射线衍射仪和电子扫描电镜表征沉积层晶相和形貌。结果 Bi-Pb O_2(ultrasonic)/Sn O_2+Sb_2O_3/Ti的加速寿命比Pb O_2/Sn O_2+Sb_2O_3/Ti提高了54%。电氧化降解2-氯苯酚溶液4 h后,以掺Bi二氧化铅电极为阳极,相比于二氧化铅电极,对2-氯苯酚的脱除率提高了19%,槽压降低了7%,稳态极化曲线和电氧化降解2-氯苯酚溶液试验反映了相同的结论。结论超声波环境和Bi掺杂显著提升电极的性能,掺Bi的二氧化铅沉积层表现出较高的电催化性和电氧化2-氯苯酚的选择性,超声电沉积二氧化铅能增大电极比表面积,提高电极的表观催化活性和电极加速寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号