首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用金相显微镜和拉伸试验机研究了真空时效对QBe2铍青铜的力学性能和微观组织的影响.结果表明,时效初期,材料强度提高、伸长率下降;峰时效后,随着温度和时间延长,强度趋向稳定,但伸长率不断下降;时效后晶内析出弥散分布的细小析出相,晶界出现不连续的析出相;双级时效可提高材料强度,但降低伸长率.QBe2铍青铜的最佳真空时效工艺为320℃保温2h,随炉冷却.  相似文献   

2.
研究了950 ℃下保温2 h空冷的ZTC4合金(α+β固溶处理态,简称ABST)进行时效热处理后的室温力学性能和微观组织特征.试验数据表明,时效热处理可以有效提高ZTC4合金的室温力学性能,经过 600 ℃×4 h或850 ℃×2 h时效热处理,均可获得良好的室温综合力学性能和微观组织.  相似文献   

3.
时效处理对新型Al-Cu-Li合金组织与性能的影响   总被引:1,自引:0,他引:1  
通过常温拉伸试验和TEM观察,研究了时效处理工艺对新型Al-Cu-Li合金微观组织和力学性能的影响.结果表明,时效温度和时效时间对Al-Cu-Li合金的组织性能均产生较大的影响,其中时效温度的影响更为明显.时效前的预变形可促进T1相非均匀形核,使T1相细化,加强T1相对合金的沉淀强化效果,阻止σ相的形成,改善合金的组织,使合金的力学性能得到显著提高.该合金T6态最佳时效制度为:520 ℃×2 h 165 ℃×48 h;T8态最佳时效制度为:520 ℃×2 h (4%~6%)预变形 135 ℃×48 h.  相似文献   

4.
研究了汽车用AZ91镁合金挤压后固溶时效处理对其微观组织和力学性能的影响。结果表明:AZ91镁合金的微观组织主要由基体α-Mg和约20.6wt%的β-Mg17Al12相组成,晶粒平均尺寸约为22μm。固溶处理后合金发生再结晶,β相完全回溶到α-Mg基体,约有15.6wt%的二次β相在时效过程中析出。AZ91镁合金在410℃固溶8 h后拉伸强度略微增大,而固溶处理16 h后拉伸强度降低。合金随后在200℃时效8~16 h的过程中析出细小二次β相,增加了晶内位错运动和晶界滑动阻力,使合金的拉伸强度逐渐增大。时效24 h后因细小二次β相的粗化而使合金力学性能降低。挤压态AZ91镁合金较优的固溶时效工艺为:410℃×8 h,空冷+200℃×16 h,空冷。  相似文献   

5.
研究了固溶处理、时效处理、形变时效等对QBe2合金显微组织及性能的影响.结果表明,QBe2合金最佳固溶处理工艺为780℃×10 min水淬,时效工艺为320℃×2 h空冷,经此工艺处理后合金的抗拉强度达到1257MPa,电阻率为0.0677Ω·mm2/m;时效前的冷变形对晶界的不连续析出有抑制作用,使沉淀相沿晶内滑移线析出显著,形变时效可以使合金强度达到1390MPa,与一般软态峰值时效相比,强度提高10.3%.  相似文献   

6.
通过DSC、SEM和XRD研究了热处理工艺对2A14铝合金环锻件微观组织和力学性能的影响。结果表明,505℃固溶1.5 h后,合金的强化相充分固溶,晶内残留相较少,晶界清晰完整;时效工艺对力学性能,尤其是伸长率的影响很大。当时效时间为6 h时,随着时效温度的增加,伸长率迅速降低。当时效温度为165℃时,随时效时间的延长,伸长率也迅速降低。2A14铝合金环锻件的较优工艺为:505℃×1.5 h固溶+165℃×6 h时效。  相似文献   

7.
对T87时效态2297铝锂合金进行中温(150℃)多向压缩直至析出相基本回溶至基体,再对其在160℃与180℃不同时间(0~48 h)条件下进行时效处理,利用透射电镜观察合金的微观组织,研究这种新型热处理工艺对2297铝锂合金组织与力学性能的影响。结果表明:时效温度为160℃时,时效48 h合金的主要析出相为δ'相,与固溶时效工艺相比,析出相析出时间延长。时效温度为180℃时,48 h合金的主要析出相为θ'相、T1相和少量δ'相。与固溶时效工艺相比,强变形固溶时效工艺增强了合金的综合力学性能。  相似文献   

8.
利用铝合金淬火热处理炉、真空烘干箱、万能拉力机、金相显微镜、透射电子显微镜等设备研究了在不同热处理制度下新型建筑用Al-Cu-Mn热挤压变形铝合金的微观组织和力学性能。结果表明,该Al-Cu-Mn合金最佳固溶热处理温度为543℃。随着时效保温时间的增加,抗拉强度先升高后下降,保温14 h时,铝合金最高抗拉强度达到480MPa。此时,合金的微观组织主要由α-Al、T相和Al2Cu组成,时效析出强化相主要由θ'相和θ'相组成。该合金最优热处理工艺制度为543℃×45 min+175℃×14 h。  相似文献   

9.
镍基IN718合金时效过程中α-Cr相演变行为   总被引:2,自引:0,他引:2  
通过力学性能试验,扫描电镜观测和化学重量分析,研究了直接时效与标准热处理工艺处理的IN718合金盘材经593℃-677℃高温长期时效至2000h后力学性能和微观组织行为。结果表明,直接时效的DA718合金在未经长期时效前已含有约0.006w/%的α—cr相,于650℃和677℃时效2000h后α-Cr相均达0.6w/%左右,而在相同时效条件下,标准IN718合金α—Cr相比DA718要少。合金强度的变化规律与冲击韧性明显不同,2种合金微观组织演变行为也有明显区别,特别是α—Cr和δ相的变化行为。因此,合金微观组织行为对综合力学性能的影响需要进行综合考虑。  相似文献   

10.
研究了不同时效温度对时效处理后的Ti-5523合金的微观组织和力学性能的影响。结果表明:在合金相变点(790±5)℃以下的760℃或相变点以上的840℃固溶处理1 h,460~580℃时效处理8 h,Ti-5523合金的微观组织和力学性能对时效温度敏感。合金强度随着时效温度升高而降低,塑性则逐渐提高。合金在760℃×1 h/AC固溶+580℃×8 h/AC时效处理后的断后伸长率和断面收缩率分别为17. 50%和67%,具有良好的塑性。固溶及时效处理后的Ti-5523合金强度主要受α相含量和尺寸的影响,α相尺寸减小或α相含量增加均可以提高合金的强度。随着时效温度的升高,在双相区固溶的时效态合金的初α相逐渐从长条状向短球状、椭球状转变,且含有短球状、椭球状的初生α相的合金具有更好的塑性变形能力。由于初生α相和次生α相的尺寸、含量随着时效温度的增加而发生的改变对合金力学性能产生的影响是协同的,因此双相区固溶的时效态合金的力学性能对时效温度非常敏感。  相似文献   

11.
曾强  吴颖  肖辉进  朱绍维 《金属热处理》2021,46(10):122-126
采用激光选区熔化工艺(SLM)制备了Inconel 718合金,并对合金分别进行了1050 ℃×1 h固溶和1050 ℃×1 h固溶+720 ℃×8 h+620 ℃×8 h双级时效热处理。结合微观组织、拉伸性能和断裂特征分析,研究了热处理工艺对SLM制备的Inconel 718合金组织和力学性能的影响。结果表明:固溶处理后合金内Laves相溶解,位错密度显著降低,材料的强塑性匹配较打印态得到良好的改善。经过时效热处理后,γ′和γ″强化相析出使合金强度大幅度提高的同时,保留了一定的塑性。  相似文献   

12.
7A55铝合金预拉伸板材的双级时效工艺   总被引:1,自引:0,他引:1  
研究了不同热处理工艺下7A55铝合金淬火预拉伸(W51)板材的力学性能、腐蚀性能、电导率变化以及相应的微观组织特点.用正交实验分析双级时效工艺,结果表明7A55铝合金双级时效的四因素中第二级时效温度和时间是影响最终性能的主要因素.淬火预拉伸7A55合金板材最佳双级时效热处理工艺分别为:T7651:121℃×5h+170℃×6h,T7451:121℃×5h+160`C×14h.电镜观察结果表明,T7451,T7651时效时晶内析出半共格的η'相和η相,并有不同程度粗化,晶界为断续分布的粗大η平衡相.这种微观结构能有效的提高7A55合金板材的电导率和腐蚀性能,同时使合金具有较高强度.  相似文献   

13.
采用热分析法确定了试验铝青铜的相变点。在此基础上,对其进行了以二级时效工艺参数为因素,以力学性能为考核指标的正交试验研究,分析了合金的显微组织,并与单级时效工艺后合金的组织和性能进行了对比。结果表明:试验铝青铜的相变点为902.3℃,最佳二级时效工艺参数为200℃×2.5 h+500℃×2.5 h。在采用固溶(940℃×2 h)+最佳二级时效工艺处理后合金的抗拉强度为934 MPa,硬度为239.6HB,断后伸长率为13.3%,与采用固溶(940℃×2 h)+时效(500℃×3 h)处理相比,分别提高10.27%、30.28%、4.72%,组织中第二相颗粒更加细小且弥散。  相似文献   

14.
采用光学显微镜、扫描电镜、X射线衍射和透射电镜等研究了Ti-55531合金经890℃固溶2 h后再经过单级时效(580℃×1~12 h)和双级时效(400℃×12 h+580℃×1~12 h)处理后α相的析出粗化行为,并探讨了α相形貌对其室温拉伸力学性能的影响。结果表明:固溶合金组织包含β相和纳米无热ω相,裂纹主要沿着β相内滑移带扩展,导致准解理面的形成,合金强度较低,为755 MPa;而单级时效合金组织由微米条状α相、晶界α相和β相组成,空洞沿着晶内长条α相形核并连接成准解理面,强度和伸长率分别为1352 MPa和5. 3%;双级时效合金由纳米条状α相、晶界α相和β相组成,脆性裂纹主要沿β晶界扩展,强度高达1648 MPa,伸长率仅为1%。  相似文献   

15.
以含Er的压铸Al-Si-Mg合金为研究对象,通过拉伸性能测试、光学显微镜(OM)、扫描电镜(SEM)、能谱(EDS)及透射电镜(TEM)分析及定量统计,分析研究了不同固溶、时效工艺对合金组织及性能的影响。结果表明:双级固溶有利于一次相回溶至基体,使合金的塑性提高;固溶温度、时间的提高能够增加固溶到基体中的溶质原子和一次相的数量。Al-Si-Mg合金峰时效时,主要的强化相为β″、β′相,β′相主要表现为长条状及“T”字形。当热处理工艺为(280 ℃×3 h+530 ℃×3 h)固溶+170 ℃×3 h时效时,合金的伸长率达8.5%,具有高塑性; 热处理工艺为(280 ℃×3 h+540 ℃×10 h)固溶+170 ℃×10 h时效时,合金的抗拉强度为344 MPa,屈服强度为312 MPa,合金具有高强度。  相似文献   

16.
对Al-4.74Zn-2.13Mg-1.20Cu合金进行了几种不同的多级时效处理,采用显微硬度仪、拉伸实验、扫描电镜以及透射电镜等研究了Al-4.74Zn-2.13Mg-1.20Cu合金在峰时效下多级时效过程中的力学性能变化以及合金内部析出相的转变。结果表明,120℃×24 h为合金的峰时效工艺参数;双级时效可明显改善合金的电导率,但使合金强度、硬度降低;三级时效既可使合金达到峰时效下的力学性能,又可以提高合金的电导率,三级时效(120℃×24 h+180℃×1 h+120℃×24 h)下合金的综合性能最好。双级时效使合金内部晶粒粗大,随三级时效时间的减少,合金内部析出相尺寸也减小。  相似文献   

17.
时效处理对真空增压铸造A357合金组织和性能的影响   总被引:1,自引:1,他引:0  
通过力学性能测定和金相显微组织观察,对真空增压铸造A357合金的时效处理工艺进行了研究.结果表明,该合金较为理想的时效处理工艺为170 ℃×2 h +185 ℃×1 h的双级时效工艺.在此工艺下,合金组织中有细小、弥散、均匀的时效强化相,而这种形式的时效强化相对合金的性能提高极为有利.此时合金的抗拉强度能达到345 MPa以上,伸长率达到7.0%以上,硬度(HB)达到105以上.  相似文献   

18.
近β型钛合金Ti55531在INSTRON-5948R微型材料试验机上开展了经800 ℃/2 h固溶+580~640 ℃/6~10 h时效热处理后的力学性能试验,获得了不同时效工艺下Ti55531合金的力学性能及强塑积。研究了时效处理对合金微观组织演变规律及合金在拉伸变形时的断裂机制。结果表明:次生片层 α 相对时效参数变化比初生 α 相更敏感。次生片层 α 相厚度与时效温度或时效时间呈线性正相关。与时效时间对比可知,次生片层α相粗化速率对时效温度敏感性较弱,且其随时效温度和时效时间粗化速率分别约为1 nm/℃和8 nm/h。合金经固溶时效后,其力学性能显著提升,且合金在800 ℃/2 h固溶+640 ℃/8 h时效后达到最佳的综合力学性能,此时抗拉强度为1144 MPa,延伸率为8.16%,且强塑积超过9.3 GPa.%。合金经固溶时效热处理后拉伸断裂形式为韧脆混合型断裂,且以韧性断裂为主,包括晶间开裂和微孔合并。  相似文献   

19.
研究了Ti-26合金经不同变形量变形后,在β相区和α β相区分别固溶、时效的力学性能和显微组织的变化.研究发现,Ti-26合金经80%变形后,经730℃×30min 500℃×10h固溶时效的综合力学性能最好;变形量为50%~80%时,随变形量的增加,强度变化不大,塑性得到明显提高;固溶时效后的组织为β基体和基体上弥散分布的短棒状α相.  相似文献   

20.
研究了Sc含量以及固溶、时效热处理对6061铝合金组织和力学性能的影响。结果表明,添加Sc可以有效细化铸态6061铝合金晶粒尺寸,提高力学性能,Sc的最佳添加量为0.2 mass%。固溶+时效可以进一步提高6061铝合金的力学性能,不含Sc的6061铝合金最佳热处理工艺为570℃×1 h固溶+175℃×8 h时效,含0.2 mass%Sc的6061铝合金为570℃×1 h固溶+185℃×5 h时效,时效过程中析出的与基体存在共格关系的β″(Mg_5Si_6)针状相、Al_3Sc纳米颗粒起强化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号