首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
虹桥机场航油管道受地铁直流杂散电流影响,部分管道阴极保护电位无法达到保护要求,管道存在极高的电化学腐蚀风险。对航油管道的干扰情况进行检测,采取以排流保护和阴极保护相结合的综合防护措施。结果表明:管道保护电位达到保护要求,地铁对管道造成的杂散电流干扰危害得到有效消除。  相似文献   

2.
某天然气管道受到了剧烈杂散电流干扰。通过电位监测对管道受到的干扰程度进行评价,分析了杂散电流流入、流出规律,并确定了干扰的分区。通过馈电试验研究了增大阴极保护电流对抑制电位正向偏移的作用。结果表明:管道受强烈的地铁直流杂散电流干扰;管道两端管段互为直流杂散电流流入流出区域,管道中间管段与两端管段互为直流杂散电流流入流出区域;阴极保护电流可以有效抑制管道电位正向偏移,但是抑制范围(长度)是有限的。地铁动态直流杂散电流对管道的干扰问题需要地铁方与管道方共同协作。  相似文献   

3.
西气东输二线、三线赛里木湖段管道电位波动异常,通过长时间电位监测并与地磁暴活动规律对比,证明该段管道受地磁干扰影响。对该段管道阴极保护效果进行评估,同时分析了地磁干扰规律,通过多种方法对管道的腐蚀速率进行了评估。  相似文献   

4.
通过同步监测(有轨)电车的轨地电位和管道通/断电电位,研究了超级电容储能供电型有轨电车对埋地钢质管道的杂散电流干扰。结果表明:电车在车站充电时,铁轨轨地电位有明显的正负向偏移,杂散电流通过铁轨吸收和排放。管道受电车杂散电流干扰影响时,通电电位为-7.060~3.023 V(相对铜/硫酸铜参比电极,CSE),断电电位为-1.219~-0.143 VCSE,沿线多处管道断电电位正于-0.85 V,不满足阴保准则,干扰影响范围远大于97 km。管道靠近与远离电车的管段互为杂散电流流入和流出的区域,且靠近电车管段的干扰程度更大。电车在牵引变电站供电范围内的车站充电时,铁轨轨地电位上升,铁轨流出的杂散电流就近流入电车附近的管段,杂散电流顺着管道往远离电车的方向流动,在远离电车的管段流出。  相似文献   

5.
静态直流杂散电流会对埋地金属管道造成严重干扰腐蚀。为了研究管道外加电流阴极保护系统产生的杂散电流对管道的干扰影响,使用仿真软件COMSOL Multiphysics基于边界元法建立了由阴极保护管道、干扰管道和辅助阳极组成的干扰模型,研究了两条管道的交叉角、阳极与交叉点距离、土壤电导率及防腐涂层厚度对干扰管道上的杂散电流干扰影响规律。结果表明:当阳极与交叉点距离小于6km时,干扰管道受杂散电流干扰最为严重;当交叉角小于45°(在15~90°范围)、土壤电导率小于0.01S/m及防腐涂层厚度小于3mm时,干扰管道的杂散电流干扰显著增高,并针对各因素干扰工况下提出合理建议。研究结果可以为管道保护运行和干扰防护提供理论依据与实际参考。  相似文献   

6.
北京市轨道交通发展迅猛,泄漏到大地的杂散电流日益增多,这些杂散电流会对埋地燃气管道造成干扰。本文对北京市埋地燃气管道所受地铁杂散电流干扰情况进行了现场检测,分析了干扰的程度和范围;研究了管道与地铁相对位置对杂散电流干扰的影响规律,同时探讨了北京地区地铁杂散电流干扰下管地电位的波动特性。结果表明:随着管道与地铁间距的减小,干扰越来越严重,并且在相同间距下交叉点的干扰程度大于并行段。地铁检修站附近的管道受杂散电流干扰更大。北京地区地铁杂散电流干扰下管地电位的波动周期主要分布在50~200 s间。  相似文献   

7.
城市轨道交通对埋地管道造成了严重直流杂散电流干扰。为了了解直流杂散电流对管道的影响,选取一段受杂散电流干扰较为严重的管道,采用接地排流和极性排流相结合的方式,在牺牲阳极处安装极性排流器,并连续检测排流前后测试桩处的阴极保护电位。对比数据表明,管道保护电位达到正常值,管道受到有效保护。  相似文献   

8.
采用试片断电法和电位监测系统,对广东地区的某天然气管道进行24h的通/断电电位检测和长期监测,发现管道存在明显的直流杂散电流干扰。电位检测和监测结果分析表明:广东地区的天然气管道同时存在高压直流输电系统不平衡电流、单极大地回路电流和地铁杂散电流干扰;管段由于直流杂散电流的干扰,造成阀室内绝缘卡套放电烧蚀、恒电位仪内部元器件烧毁、恒电位仪无法正常运行以及全线管道的不同位置均有管体腐蚀发生。管体腐蚀最严重的位置腐蚀深度已经达到3.69mm,此位置管道在高压直流接地极输电系统单极大地运行模式时受干扰严重管道电位能达到-174.6V。同时,由于高压直流输电系统的不平衡电流和地铁杂散电流的叠加干扰,造成管道长时间处于欠保护状态,多个因素共同作用综合造成此段管道腐蚀严重。  相似文献   

9.
地表电位梯度指标容易检测,但根据现有标准难以获得管道杂散干扰腐蚀的有用信息.本文采用新的方法测量电位梯度,并根据测量数据,解析出二种电流成分:地表干扰电流和流入(出)管道的电流;后者和实际杂散干扰腐蚀有良好相关,电流流出管道的位置代表阴极保护管道的腐蚀活性点.  相似文献   

10.
采用管地电位测量、电位梯度测量、杂散电流智能测试仪(SCM)测量等多种方法对某输油管道杂散电流干扰进行检测评价。结果表明:管道受到较严重的直流杂散电流干扰,杂散电流在SH060~SH100管段流入,导致全线阴保关闭后该管段电位偏负,而集中从SH016~SH020管段流出,使得该管段阴极保护电位难以达到正常水平。提出管道杂散电流整治措施与初步方案,为管道的维修、维护与监控提供依据。通过检测杂散电流干扰,分析主要问题并探索解决方案,降低杂散电流对输油管道的影响。  相似文献   

11.
动态直流杂散电流干扰会导致管道电位持续波动,传统恒电位仪以“恒电位”模式运行时无法根据管道保护电位进行实时调整,阴极保护效果不理想。介绍了一种以断电电位为控制电位运行的新型数控高频开关恒电位仪,并在某管道进行了现场测试。测试结果表明:配合土壤管测量断电电位,新型恒电位仪在动态直流杂散电流干扰下控制电位准确、调整实时、运行平稳,显著提升了线路的阴极保护效果。  相似文献   

12.
深圳地铁发展迅猛,泄漏到大地中的杂散电流可导致埋地管道腐蚀加速。对深圳地铁杂散电流干扰下的输水管道进行检测,确定管道的自腐蚀电位,探讨试片材质和表面状态对检测结果的影响,同时研究了管道受杂散电流干扰的规律。结果表明:杂散电流干扰程度与地铁和管道的相对位置有一定的关系,随着管道与地铁间距离减小,管道受到杂散电流干扰越来越严重;并且在相同距离下,交叉段受到干扰程度要大于平行段。同时不同材质的管道抗干扰能力也不相同。  相似文献   

13.
采用试片法及数据记录仪等测试方法对受地铁直流干扰影响管道进行了专项调查;并测试了管道长时间的通/断电电位。结果表明,在0~64km的管段(两端有绝缘接头)受到直流杂散电流干扰严重,管道在白天的极化电位正向偏移超过标准的要求,需要进行直流杂散电流排流。距地铁64~130km的管段(绝缘接头之后)也受到直流杂散电流干扰,但影响较小。  相似文献   

14.
目的减小杂散电流对南朗段天然气管道的干扰,消除杂散电流腐蚀隐患。方法利用沿线阴极保护电位测试、SCM检测等技术对南朗段管道的杂散电流干扰情况进行检测,并根据检测结果实施排流设计与改造。在009—019测试桩中设计6个排流点,用固态去耦合器排流技术实施排流改造。改造完成后,对排流效果进行验证。结果检测表明,杂散电流最大干扰值达16.839 V,杂散电流密度达393A/m~2,干扰长度为8 km。杂散电流干扰来源于电气化铁路,在铁路运行时间段存在杂散电流干扰,在铁路停运时间段无杂散电流干扰。改造完成后,杂散电流干扰电压降至了4 V以下。结论该排流技术的应用有效减小了南朗段埋地管道的杂散电流干扰,使其达到了国家规定标准,消除了杂散电流腐蚀的隐患,保障了南朗段天然气管线的安全运行。杂散电流干扰的检测与排流技术可以用于消除铁路等对埋地管道杂散电流腐蚀的影响,对受到新建带电结构影响的管道的防护工作具有示范作用。  相似文献   

15.
设计室内干扰试验,模拟现实中各类因素下交流杂散电流干扰对管道阴极保护电位的影响。通过数据采集系统对电位信号的采集,滤波系统对交、直流信号的分离,分析得到交流干扰下管道真实阴极保护电位的变化。结果表明:在交流干扰下的管道阴极保护电位会产生较大的IR降,使得管道真实的阴极保护电位偏离地表参比法测得的电位值;同时,在交流杂散电流干扰的瞬间,将会有一个较强的电位信号产生,可能会对恒电位仪及管道防腐蚀层产生不利影响。  相似文献   

16.
埋地钢质管道在ECDA检测过程中,经常使用CIPS方法检测阴极保护电位,然而阴极保护系统在受到杂散电流干扰时,所测量的电位波动极大,检测结果无法应用于阴极保护系统的评价。因此需要寻找能够适用于在杂散电流干扰下CIPS所测电位的校正方法,排除杂散电流的干扰获取有效的阴极保护电位。  相似文献   

17.
杂散电流是指在管道周围土壤环境中漫流的一种大小、方向都不固定的电流,这种电流对金属管道的腐蚀称为杂散电流腐蚀,属于电解腐蚀范畴。动态杂散电流干扰程度和极性随时间变化,由于其变化规律因干扰源的情况变化而变化。进行动态杂散电流的探测,找出干扰的来源相当困难。埋地管线上典型的动态杂散电流来自直流电力驱动系统。在受干扰的管道附近,表现为:管-地电位不稳定、管线电位严重偏离正常值,以及土壤电位梯度反常等,杂散电流通过邻近防腐层良好的管道网络可以传送到几公里以外,甚至更远的地方,杂散干扰电流会对邻近的地下金属管线/地下结构产生非常有害的影响。杂散电流干扰的危害表现在:在管道的杂散电流流出点(也称为放电点),管体会受发生强烈的电解腐蚀。  相似文献   

18.
对北京、上海、深圳、无锡等4个城市监测的地铁动态直流干扰下埋地管道管地电位数据进行了系统分析,统计了不同城市地铁杂散电流干扰下管地电位的波动周期、周期分布、波动幅值等动态特征,分析了管地通电电位对断电电位的影响,总结了地铁杂散电流干扰下管地电位动态波动规律。结果表明:在地铁运行时段,管地通电电位波动剧烈,波动存在周期性变化;同一城市内不同监测点管地通电电位波动周期分布比例基本相同,不同城市的分布比例相差不大;各地的通电电位波动范围不同,受干扰程度也不同;管地通电电位与断电电位的波动周期相一致,管地通电电位的波动对断电电位存在较小影响。  相似文献   

19.
某输气管道受地铁杂散电流干扰影响,阴极保护电位波动大,且长时间正于-850 mV(相对于CSE),阴极保护系统受干扰严重,管道受阴极保护效果未知。为了解管道真实阴极保护状况,对沿线管道土壤电阻率进行测试,对管道通断电电位进行了24 h监测,确定了管道最小阴极保护电位,并评估了管道阴极保护状况。基于管道干扰风险分析结果,调整了阴极保护站输出参数,并开展了现场馈电试验。通过连续的馈电测试,获得了较优的干扰防护措施。  相似文献   

20.
某长输埋地管道由于受外界干扰、防腐蚀层破损等原因,管道阴保电位出现欠保、过保及异常波动的现象。采用Fluke数字万用表、直流电压梯度测量法(DCVG)等埋地管道非开挖无损评价技术(NDE),对阴极保护系统进行了全面检测和诊断。结果表明,管道沿线测得的阴保电位有些超出了阴保电位准则范(-850~-1 200 mV,CSE);有些管段阴保电位频繁异常波动;防腐蚀层检测出多处破损点,而且部分腐蚀活性呈阳性。研究发现,某混凝土穿越段采用套管保护,管道沿线周围存在电厂、电力铁路等,多处与埋地管线出现并行或者交叉情况。针对阴保电位屏蔽、杂散电流干扰等问题,提出了补加牺牲阳极、合理选择排流方式等解决措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号