首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 128 毫秒
1.
钛掺杂LiFePO4的还原插锂合成及其性能   总被引:1,自引:1,他引:0  
用共沉淀法制备掺钛前驱体FePO4·2H2O,对FePO4·2H2O经常温还原插锂合成LiFePO4的前驱混合物,后经热处理得橄榄石型LiFePO4;用SEM,XRD和恒流充放电等对样品进行表征,考察Ti掺杂和合成温度对LiFePO4的物理和电化学性能的影响.研究结果表明,在600 ℃时合成的Ti掺杂样品具有优异的电化学性能,该样品在0.1C,1C和2C倍率下的首次放电比容量分别为150,130和125 mA·h/g,循环40次后的放电比容量均无衰减.  相似文献   

2.
沉淀-碳热还原联合法制备橄榄石磷酸铁锂   总被引:5,自引:1,他引:5  
以FeSO4.7H2O,NH4H2PO4和H2O2为初始原料,通过液相沉淀制得前驱体FePO4,然后通过碳热还原得到LiFePO4/C。X射线衍射和扫描电镜分析表明:560,600,700和800℃合成的样品均为LiFePO4/C,LiFePO4颗粒粒径随合成温度的升高而逐渐增大,560℃合成材料的颗粒粒径分布在0.3~0.4μm之间;而800℃合成材料的颗粒粒径则达到0.6~0.7μm,反应剩余的碳黑直接分布在LiFePO4颗粒之间,有利于提高其电子导电率。560℃样品在放电倍率为0.1C时的首次放电比容量为151 mA.h/g(0.1C),而当放电倍率达到1C时,放电比容量为129 mA.h/g,且具有良好的循环性能。  相似文献   

3.
众所周知,磷酸铁锂(LiFePO4)作为锂离子电池正极材料因其放电容量大、价格低廉和对环境无污染受到广泛关注。本文旨在制备出适用于微电子打印机的性能优良的磷酸铁锂及相应复合材料正极墨水。通过配置不同浓度的磷酸铁锂墨水并制备成电极,研究最优浓度墨水制备成电极的电化学性能。研究表明,电流密度为0.1 C时,打印浓度为10%的磷酸铁锂电极放电比容量高达142 mAhg-1,库伦循环效率达92%;基于磷酸铁锂具有较差的导电性,选择加入少量还原氧化石墨烯提高其导电性。研究结果表明,还原氧化石墨烯质量分数为0.6%时,磷酸铁锂和还原氧化石墨烯复合材料放电比容量达152.1 mAhg-1,库伦循环效率为99.2%,说明引入还原氧化石墨烯有利于提高材料整体性能。  相似文献   

4.
以LiH2PO4和FeC2O4.2H2O为原料,聚乙烯醇为碳源,通过机械化学活化辅助固相法合成原位碳包覆的LiFePO4材料;考察合成温度对LiFePO4/C材料晶体结构、物理和电化学性能的影响。结果表明:700℃下处理的产物结晶良好、分布均匀、颗粒细小;在最佳的热处理条件下,热解碳在LiFePO4颗粒表面形成了良好的纳米导电层,LiFePO4/C材料在0.1C、0.5C、1C和2C倍率下放电比容量分别为155.7、150.1、140.1和130 mA.h/g,且材料在0.1~2C范围内充放电都有很平稳的平台,极化小,并具有较高的高倍率(2C)放电比容量和较好的循环性能。  相似文献   

5.
以超声波辅助沉淀法合成的纳米级球形FePO4·2H2O为原料,采用碳热还原法制备了复合金属掺杂的LiFePO4/C复合材料。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试,循环伏安和交流阻抗测试表征了FePO4·2H2O和LiFePO4/C的物相、结构和电化学性能。结果表明,溶液浓度为0.1 mol/L时制备的FePO4·2H2O为分布均匀的纳米级球形颗粒。复合金属掺杂显著提高了LiFePO4的放电比容量,Ni和Nb复合掺杂的LiFePO4/C复合材料表现出了最佳的电化学性能,0.1 C倍率条件下首次放电容量158.8 mAh/g,1 C倍率下首次放电容量150.2 mAh/g,100次循环后容量保持率分别为98.30%和97.8%。Ni和Nb复合掺杂后提高了LiFePO4的锂离子扩散速率和电导率。  相似文献   

6.
反应物中锂元素的量对LiFePO4/C电化学性能的影响   总被引:1,自引:0,他引:1  
以Fe2O3和LiH2PO4为原料,葡萄糖为碳源,采用碳热还原法合成了LiFePO4/C正极材料,考察了反应物中锂元素的量对正极材料LiFePO4/C电化学性能的影响。用X射线衍射、扫描电镜(SEM)和恒电流充放电测试和循环伏安法对正极材料的结构、形貌以及电化学性能进行了研究。结果表明:当反应物中额外添加锂元素的量是理论量的10%时,制得的正极材料的电化学性能最佳,在0.2和1C(1C=170mA/g)的充放电倍率下,首次放电比容量分别为156.3和137.5mAh/g,经过20次充放电循环后,容量基本保持不变。  相似文献   

7.
采用LiAc·2H2O作为锂源,利用熔盐碳热还原方法在较低的烧结温度和较短的烧结时间内(650℃,4h)合成纯相LiFePO4/C材料。扫描电镜照片显示这种方法合成的材料粒径大约为1μm,小于用Li2CO3作为锂源合成的材料。电化学测试表明,采用LiAc·2H2O作为锂源合成的材料表现出了高的放电容量和良好的倍率循环性能:在0.5C和5C倍率下,其首次放电容量分别为148mA.h/g和115mA.h/g;50次循环后,容量保持率分别为93%和89%。  相似文献   

8.
采用固相法合成磷酸铁锂锂离子电池正极材料。X射线衍射分析(XRD)显示合成的样品具有橄榄石晶型结构。扫描电镜(SEM)结果显示LiFePO4的大小在0.5~2.5μm,并且形状不规则。通过电化学测试研究了不同物料配比和涂膜厚度对LiFePO4电化学性能的影响。结果显示:当物料配比为85:10:5、涂膜厚度为200μm时,以LiFePO4为正极的电池在0.1C下首次放电比容量为134.8mAh/g。从循环伏安测试(CV)发现,优化后的样品对于Li+的脱出与嵌入具有很好的可逆性,这一性能同样被交流阻抗分析(AC)所证实。  相似文献   

9.
以FePO4为铁源、Li2CO3为锂源、聚丙烯为还原剂和碳源,采用一步固相法合成原位碳包覆磷酸亚铁锂(LiFePO4/C)复合材料,研究合成温度对材料LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜和拉曼光谱技术对合成产物的晶体结构、表面形貌和碳结构进行表征,通过电化学阻抗谱(EIS)和充放电测试对材料的电化学性能进行测试和分析。结果表明:在600~750℃温度范围内都可合成纯LiFePO4/C复合材料,随着合成温度的升高,材料颗粒尺寸和石墨化程度都将增大;600℃保温8h合成的材料颗粒尺寸为100~500nm,其1C放电比容量达到144.2mA·h/g,5C放电比容量达到119mA·h/g。  相似文献   

10.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能   总被引:3,自引:1,他引:2  
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。  相似文献   

11.
Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g -1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g -1.The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.  相似文献   

12.
1 INTRODUCTION The ever-growing demand for portable batter- ies with high energy density is exerting pressure for the development of advancedlithium-ion batter- ies . Commercial Li-ion batteries rely on the appli- cation of one of the well-known lithiuminsertion hosts ,i .e . LiCoO2, Li Mn2O4and Li Ni O2. How- ever the high cost of cobalt resource ,low specific capacity of Li Mn2O4and Li Ni O2is known to be difficult to synthesize and its multi-phase reaction during electrochemical …  相似文献   

13.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni^2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征。XRD分析表明,掺杂少量Ni^2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145mAh·g^-1,高于纯的LiFePO4正极材料的容量90mAh·g^-1,经100次循环后掺杂Ni^2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%。  相似文献   

14.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16...  相似文献   

15.
以C2H2为碳源,Fe为催化剂,纳米FePO4为原料,采用催化化学气相沉积法(CCVD)合成多孔LiFePO4/C正极材料。经BET、SEM、CHON有机元素分析仪、XRD等手段对复合材料进行结构分析表征。结果表明,该复合材料具有连续贯通的三维导电网络结构,大的比表面积以及多重孔隙的类球形结构,含碳量为4.42%(质量分数),低于传统碳热还原法所制备的材料。电化学测试表明,该材料在0.1、1、5、10 C倍率下,放电比容量分别为147,141,126,110 m Ah·g-1,高倍率充放电性能大大提高,另外,该材料1 C循环80次后,放电比容量基本没有降低,显示了良好的循环稳定性能。  相似文献   

16.
In the search for improved materials for rechargeable lithium batteries, LiFePO4 offers interesting possibilities because of its low raw materials cost, environmental friendliness and safety. The main drawback with using the material is its poor electronic conductivity and this limitation has to be overcome. Here Al-doped LiFePO4/C composite cathode materials were prepared by a polymer-network synthesis technique. Testing of X-ray diffraction, charge-discharge, and cyclic voltammetry were carried out for its performance. Results show that Al-doped LiFePO4/C composite cathode materials have a high initial capacity, good cycle stability and excellent low temperature performance. The electrical conductivity of LiFePO4 material can be obviously improved by doping Al. The better electrochemical performances of Al-doped LiFePO4/C composite cathode materials have a connection with its conductivity.  相似文献   

17.
The safety issues and lower energy density of the lithium metal batteries are the two main challenges that hinder their applications in the fields of electric vehicles and portable devices.In this work,the semi-interpenetrated polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-based gel polymer electrolyte was synthesized through UV-curing method by employing the ethoxylated trimethylolpropane triacrylate (ETPTA) monomer.The semi-interpenetrating networks formed by polymerization of ETPTA and the high liquid absorption rate of the PVdF-HFP impart the as-prepared electrolyte with a high room temperature ionic conductivity of 3.17 × 10-3 s cm-1 and a high mechanical strength of 3.46 MPa.LiFePO4 was selected as cathode materials,and the active material loading of the cathode is about 4.2 mg cm-2.The electrolyte shows superior long-term cycling properties (127 mAh g-1 after 200 cycles at 0.5 C),excellent rate performance (113 mAh g-1 at 1 C,80 mAh g-1 at 2 C,and the discharge capacity of 135 mAh g-1 can be restored when the rate goes back to 0.1 C) as well as good ability to inhibit the growth of lithium dendrite (about 150 h).The facile synthesis strategy and great electrochemical performance of the electrolyte make it a potential candidate for lithium metal batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号