首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
不锈钢这一级的钢子1050~1150℃温度范围内,在氮气中氮进行了升扩散,淬火得到高氮马氏体或高氮奥氏体渗层,低碳,低氮马氏体类型可能是含氮淬硬层形成硬的马氏体渗层,可用于不锈钢轴承和工具;双相不锈钢处理后获得高强度奥氏体渗层,可以减轻泵的气蚀。与碳元素相比,溶入的氮可以提高耐蚀性,该工艺与普通渗氮处理的本质区别在于 溶入奥氏体中而不是在铁素体中沉淀析出。  相似文献   

2.
不锈钢这一级的钢于1050~1150℃温度范围内,在氮气中氮进行上升扩散,淬火得到高氮马氏体或高氮奥氏体渗层。低碳、低氮马氏体类可能是含氮淬硬层形成硬的马氏体渗层,可用于不锈钢轴承和工具;双相不锈钢处理后获得高强度奥氏体渗层,可以减轻泵的气蚀。与碳元素相比,溶入的氮可以提高耐蚀性。该工艺与普通渗氮处理的本质区别在于氮是溶入奥氏作中而不是在铁素体中沉淀析出。  相似文献   

3.
双相不锈钢15Cr-7.5Mn-2.6Mo的固溶渗氮工艺研究   总被引:3,自引:1,他引:3  
采用正交实验法研究了 15Cr 7 5Mn 2 6Mo双相不锈钢的固溶渗氮工艺。结果表明 :在压力0 15MPa的高纯N2 气氛中 ,10 5 0℃× 2h +115 0℃× 3h +10 5 0℃× 2h +115 0℃× 4h工艺为最佳工艺 ,按此工艺 ,可获得 1 6 2mm以高氮奥氏体为主的表层。方差分析表明 :渗剂种类对固溶渗氮影响特别显著 ,炉内压力与工艺的影响显著。X射线衍射分析证实固溶渗氮后缓冷试样表层主要物相为 :氮奥氏体、CrN、Fe3O4 和少量氮铁素体 ;固溶渗氮 +固溶处理试样表层为单相氮奥氏体。这说明固溶渗氮是氮在奥氏体的纯扩散过程 ,测得PN2 =0 15MPa、10 5 0~ 12 0 0℃条件下的氮的扩散激活能Q =186 6kJ mol  相似文献   

4.
304奥氏体不锈钢固溶渗氮的研究   总被引:1,自引:1,他引:1  
在氮气中对304奥氏体不锈钢进行固溶渗氮,用电子探针测定了渗氮层的氮浓度分布,用扫描电子显微镜观察了渗氮层的金相组织。结果表明,固溶渗氮可以使304奥氏体不锈钢获得高氮奥氏体层;表面氮浓度随渗氮温度的升高和氮气压力的增大而增加,渗氮层深度随渗氮温度的升高和保温时间的延长而增加;渗氮后空冷和水冷时氮为固溶状态,炉冷时会析出氮化物。  相似文献   

5.
高能球磨和冷压烧结制备Cr-Mn-Mo-N无镍不锈钢   总被引:1,自引:0,他引:1  
采用高能球磨结合高温渗氮方法制备了Cr18Mn12Mo3N无镍高氮不锈钢粉末,随后利用冷压烧结工艺获得了无镍高氮奥氏体不锈钢材料。结果表明:制备的高氮复合粉末近球形,具有良好的成形性;Cr18Mn12Mo3N不锈钢的最佳烧结温度为1250℃,相对密度达到97.1%,氮含量为0.79%(质量分数);经过1150℃固溶处理水冷后能获得完全奥氏体组织,其钝化电位范围宽,点蚀电位高,抗点蚀性能显著优于316L不锈钢。  相似文献   

6.
杨威  卢军  王琦 《热处理》2011,26(3):71-72
研究了A4双相不锈钢的离子渗氮工艺.结果显示,渗氮温度和气氛氮势(即氮与氢之比)对渗氮层的深度有影响,而对硬度无明显影响.当渗氮温度为580℃,N2:H2=1:9时,渗氮层表面硬度可达1200~1300HV0.3,渗氮层深度为0.10 mm.  相似文献   

7.
目的提高F51双相不锈钢的硬度以及耐磨性能。方法将F51双相不锈钢进行低温(450℃)和高温(550℃)离子渗氮处理,利用光学显微镜(OM)、扫描电子显微镜(SEM)观察F51双相不锈钢渗氮层的微观组织,利用X射线衍射(XRD)方法对渗氮层沿深度方向相组成的变化进行分析,采用显微硬度计、摩擦磨损实验机分别对渗氮层的显微硬度及耐磨性能进行测试,采用激光扫描共聚焦显微镜(LSCM)对磨痕形貌进行观察。结果F51双相不锈钢低温渗氮层主要由N相组成,由表及里为N N+N(少量);高温渗氮层主要由CrN+N相组成,由表及里为CrN+N N+N。高温渗氮层厚度约为低温渗氮层厚度的3倍。低温渗氮样品的平均表面硬度约为基体表面硬度的3.5倍;高温渗氮样品的平均表面硬度约为基体硬度的4倍。基体的摩擦系数约为0.71,低温和高温渗氮处理后样品的摩擦系数大大降低,分别为0.24和0.17。渗氮样品磨痕的宽度和深度较基体显著降低。结论F51双相不锈钢低温渗氮层主要由N相组成,高温渗氮层主要由CrN+N相组成,两种温度渗氮后的样品硬度和耐磨性均得到显著提高。  相似文献   

8.
为避免铬氮化物的析出,离子渗氮一般在低温(450℃)下来制备S相层。本文在高温下快速氮化获得氮的膨胀奥氏体S相层。AISI304奥氏体不锈钢在高温(530℃)下渗氮处理0~5 h。采用X射线衍射仪、扫描电镜和显微硬度仪等表征氮化样品。采用阳极极化试验研究氮化前后样品在3.5%Na Cl溶液中的腐蚀性能。结果表明:高温快速氮化处理不仅提高奥氏体不锈钢的表面硬度,而且提升了耐蚀性。  相似文献   

9.
刘沉  李再久  金青林 《铸造》2022,(3):296-301
采用高压区域熔炼增氮工艺制备了12Cr21Ni5TiN双相不锈钢.研究了高压区熔增氮工艺中的氮气压力对含氮双相不锈钢包晶转变及性能的影响.结果表明,随着氮气压力升高,试样中的氮含量由0升高到0.19wt%,奥氏体体积分数由39.44%升高到69.03%.在包晶转变过程中,随着氮含量的增加,液相(L)转变为奥氏体相(γ)...  相似文献   

10.
采用空心阴极离子源辅助,研究了低温(400℃)低压(2 Pa)下工作气体中氢气含量(氮氢比)对316L不锈钢离子渗氮层的组织形貌和性能影响。采用显微硬度计、球-盘滑动摩擦磨损仪、电化学工作站等仪器研究了渗氮处理对奥氏体不锈钢力学性能和电化学腐蚀性能的影响。结果表明:工作气体中随着氢气含量的增加,渗氮层深度、表面硬度等单调地降低;随着工作气体中氮气含量的增加,渗氮层组成相γN的晶格参数单调增加,晶粒膨胀程度增加,表面滑移带密度随之增加。通过离子源辅助,低温低压离子渗氮可有效地使316L不锈钢渗氮层表面硬度超过1100 HV,且在3.5%NaCl溶液中腐蚀电流密度比316L奥氏体不锈钢基体降低1倍。  相似文献   

11.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

12.
Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650?°C for 2?h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (????), expanded austenite (??N), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610?°C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650?°C, the expanded austenite decomposed into ??N and CrN. The decomposed ??N then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125?±?5?kJ/mol.  相似文献   

13.
Abstract

The mechanism of decomposition transformation of Fe–N the austenite system has been investigated. An improved process of austenitic nitriding, achieved by applying controlled nitrogen potential theory, allowed high nitrogen austenite samples with a uniform nitrogen concentration to be produced. The key point of this gas nitriding process is to keep the atmosphere at very low nitrogen potential. As a result, the nitride layer on the surface of the pure iron foil was reduced and pure iron ferrite was thoroughly nitrided, forming high N austenite (γ-Fe[N]) that is thermally stable at room temperature. The nitrogen concentration of this austenite was determined as 9·32 at.-%, which is almost the maximum value achievable in Fe–N austenite.  相似文献   

14.
Influence of nitriding time on the microstructure and microhardness of AISI 321 austenite stainless steel was investigated, using a complex salt bath heat-treatment at low temperature, 430 °C. Experimental results revealed that after salt bath nitriding, a modified layer was formed on the surface of substrate with the thickness ranging from 2 μm to 30 μm with changing treating time. The nitrided layer depth thickened extensively with increasing nitriding time. The growth of the nitrided layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. Scanning electron microscopy and X-ray diffraction showed that in 321 stainless steel subjected to complex salt bathing nitrided at such temperature for less than 8 hours, the main phase of the nitrided layer was expanded austenite (S phase) by large. When the treatment time is prolonged up to 8 hours and more, S phase is formed and subsequently transforms partially into CrN, and then the secondary CrN phase precipitated. With treating time prolonged, more CrN precipitates formed along the grain boundaries in the outer part. In the inside part between the some CrN and the substrate, there is still a broad single S phase layer. All treatments can effectively improve the surface hardness.  相似文献   

15.
AISI 304 austenitic stainless steel was plasma nitrided at the temperature ranging from 410 to 520 °C with pre-shot peening. The structural phases, micro-hardness and electrochemical behavior of the nitrided layer were investigated by optical microscopy, X-ray diffraction, micro-hardness testing and anodic polarization testing. The effects of shot peening on the nitride formation, nitride layer growth and corrosion properties were discussed. The results showed that shot peening enhanced the nitrogen diffusion rate and led to a twice thicker nitrided layer than the un-shot peening samples under the same plasma nitriding conditions (410 °C, 4 h). The nitrided layer was composed of single nitrogen expanded austenite (S-phase) when nitriding below 480 °C, which had combined improvement in hardness and corrosion resistance.  相似文献   

16.
The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.  相似文献   

17.
Nitrocarburizing of the type SAE 2205 duplex stainless steel was conducted at 450 °C, using a type of salt bath chemical surface treatment, and the microstructure and properties of the nitrided surface were systematically researched. Experimental results revealed that a modified layer transformed on the surface of samples with the thickness ranging from 3 to 28 μm changed with the treatment time. After 2205 duplex stainless steel was subjected to salt bath nitriding at 450 °C for time less than 8 h, the preexisting ferrite zone in the surface transformed into austenite by active nitrogen diffusion. The main phase of the nitrided layer was the expanded austenite. When the treatment time was extended to 16 h, the preexisting ferrite zone in the expanded austenite was decomposed and transformed partially into ε-nitride precipitate. When the treatment time extended to 40 h, the preexisting ferrite zone in the expanded austenite was transformed into ε-nitride and CrN precipitate. Further, a large amount of nitride precipitated from preexisting austenite zone. The nitrided layer depth thickness changed intensively with the increasing nitriding time. The growth of the nitride layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. The salt bath nitriding can effectively improve the surface hardness. The maximum values measured from the treated surface are observed to be approximately 1400 HV0.1 after 8 h, which is about 3.5 times as hard as the untreated material (396 HV0.1). Low-temperature nitriding can improve the erosion/corrosion resistance. After nitriding for 4 h, the sample has the best corrosion resistance.  相似文献   

18.
Liquid nitriding of type 321 austenite stainless steel was conducted at low temperature at 430 °C, using a type of a complex chemical heat-treatment; and the properties of the nitrided surface were evaluated. Experimental results revealed that a modified layer was formed on the surface with the thickness ranging from 2 to 30 μm varying with changing treatment time. When the stainless steel subjected to the advanced liquid nitriding less than 8 h at 430 °C, the main phase of the nitrided coating layer was the S phase generally. When the treatment time prolonged up to 16 h, S phase formed and partially transformed to CrN subsequently; and then the fine secondary CrN phase precipitated. All treatments performed in the current study can effectively improve the surface hardness. The nitrided layer thickness changed intensively with the increasing nitrided time. The growth of the nitride layer took place mainly by nitrogen diffusion according to the expected parabolic rate law. The highest hardness value obtained in this experiment was about 1400 Hv0.25. Low-temperature nitriding can improve the corrosion resistance of the 321 stainless steel against diluted vitriolic acid. The immerse test results revealed that the sample nitrided for 16 h had the best corrosion resistance than the others. SEM examinations indicated that after nitriding, the corrosion mechanisms of the steel had changed from serious general corrosion of untreated sample to selectivity corrosion of nitrided samples in the diluted vitriolic acid.  相似文献   

19.
周武  王敏  赵同新  卢军  杨旗 《金属热处理》2022,47(11):147-151
采用离子渗氮工艺对一种Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢进行表面改性处理。利用光学显微镜(OM)、X射线衍射(XRD)、电子探针显微分析仪(EPMA)和维氏硬度计对不同离子渗氮温度下渗层的组织和性能进行了研究。结果表明,Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢经430~520 ℃离子渗氮处理10 h后,试样表面均形成一层厚度均匀的渗氮层,表面硬度显著增大。随着离子渗氮温度的升高,渗层厚度增大,520 ℃渗氮时渗层厚度达到78 μm。当渗氮温度为430 ℃时,渗层表面主要由γN+CrN+γ′-Fe4N相组成;当渗氮温度升高至520 ℃时,渗层表面主要由γ′-Fe4N+CrN+ε-Fe2-3N相组成。在3种渗氮温度下,渗层中均有CrN析出,导致渗层耐蚀性低于基体组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号