首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
杨双平  贺峰  杜刚 《热加工工艺》2012,41(17):16-18,21
近年来,随着高品位硫化镍矿的枯竭及国内不锈钢产业的快速发展,低品位红土镍矿已经成为生产镍铁产品的主要原料.为了解决红土镍矿的合理利用问题,以红土镍矿为原料,煤粉为还原剂,采用直接还原法将矿石中的镍还原成了金属镍,经磁选分离使镍得到富集.考察了还原温度,还原时间,原料粒度,配煤量对镍回收率的影响.通过试验得出的最佳工艺条件为:原料粒度-0.074 mm、配煤量4%、还原剂粒度0.177~0.25 mm、还原温度1200℃、还原时间90min;得到的焙烧产物细磨至-0.048 mm,并在0.4T的磁场强度下扫选.在0.1T精选后,镍的品位为6.4%,镍的回收率为90%.  相似文献   

2.
红土镍矿真空碳热还原脱镁的热力学研究   总被引:1,自引:0,他引:1  
高镁低品位红土镍矿开发利用的关键在于提取镍的同时,重视金属镁等金属的综合回收利用。本文从热力学角度针对真空碳热还原红土镍矿脱除金属镁的过程进行了分析及能耗估算,探索处理红土镍矿的新工艺的热力学可行性。热力学计算表明,真空碳热还原红土镍矿脱除金属镁是可行的。当体系压强100Pa左右的条件下,MgO被还原的温度大于1478K,Ni、Fe以及部分硅将优先被还原为金属;过程能耗理论估算表明:当红土镍矿∶煤炭(质量比)=100∶42,1600K~1800K条件下还原处理1吨红土镍矿,需消耗1.12吨~1.17吨标准煤。  相似文献   

3.
红土镍矿脱水机理及还原过程动力学   总被引:1,自引:0,他引:1  
研究红土镍矿的脱水机理及还原过程动力学。结果表明,红土镍矿在升温过程中主要进行自由水的脱除、针铁矿的分解、高岭石及蛇纹石的脱羟基反应和蛇纹石类矿物的第二段脱羟基反应;红土镍矿还原过程可分为3个阶段,第一阶段的控速环节是化学反应,预焙烧和未焙烧红土镍矿的活化能分别为90.21和63.12 kJ/mol;第二阶段和第三阶段控速环节是扩散,红土镍矿的活化能逐渐增大。  相似文献   

4.
红土镍矿还原焙烧-磁选制取镍铁合金原料的新工艺   总被引:1,自引:0,他引:1  
采用钠盐添加剂强化红土镍矿的还原焙烧-磁选,确定了添加剂存在下适宜的焙烧和磁选技术参数,开发出红土镍矿还原焙烧-磁选制取镍铁合金原料的新工艺.结果表明:钠盐添加剂具有显著降低焙烧温度、大幅提高产品镍、铁品位和回收率的作用;对一种含镍1.58%、铁22.06%的红土镍矿配加添加剂后,在还原温度1 100℃、还原时间60 min、磁场强度0.1T的条件下,磁性产品的镍、铁品位可分别从无添加剂时的2.0%、57.2%提高到7.5%、80.5%,镍、铁回收率也相应从19.1%、33.6%增加到82.7%、62.8%.XRD结果表明:红土镍矿在无添加剂作用下经还原焙烧-磁选所得的磁性产物中仍有部分镁橄榄石及顽火辉石存在;而有添加剂存在时,还原生成的镍铁合金通过磁选可与非磁性脉石成分得到更为有效的分离,产品可作为不锈钢的生产原料.  相似文献   

5.
红土镍矿钠盐还原焙烧-磁选的机理   总被引:2,自引:0,他引:2  
配加钠盐焙烧可改善红土镍矿的还原-磁选效果,显著提高磁性产品的镍、铁品位及回收率。通过热力学计算,并结合X射线衍射、光学显微镜以及环境扫描电镜分析,对硫酸钠和碳酸钠作用下红土镍矿的还原行为进行研究。结果表明:钠盐在红土镍矿还原焙烧过程中,可以破坏硅酸盐矿物的结构,有利于镍的还原富集。碳酸钠强化镍还原的能力强于硫酸钠的,硫酸钠则因还原过程中形成的硫具有降低镍铁金属颗粒表面张力的作用,因而其促进镍铁颗粒聚集长大的能力明显高于碳酸钠的,且硫酸钠作用下FeS的形成也有利于提高镍的品位。所以,硫酸钠和碳酸钠的共同作用下可获得高镍品位的磁性产品及较高的镍回收率。  相似文献   

6.
低品位红土镍矿深度还原机理   总被引:3,自引:0,他引:3  
采用扫描电子显微镜和EDS能谱研究低品位红土镍矿深度还原过程中金属颗粒的生长行为,并在此基础上分析其还原机理。结果表明,金属铁和镍逐渐聚集生长为Fe—Ni颗粒,并且颗粒粒度随着还原温度的升高和还原时间的延长而明显增大。还原后,红土镍矿明显变为Fe—Ni金属颗粒和渣相基体两部分。铁镁橄榄石的还原与其晶体化学特性密切相关。铁和镍的氧化物被还原剂还原为金属铁和镍,同时,橄榄石的晶格结构被破坏。红土镍矿深度还原包含金属氧化物还原和金属相生长两个过程。  相似文献   

7.
在分析低品位红土镍矿成分、物相的基础上,提出一种利用硫酸对红土矿在常压下湿法浸出、分级沉积金属元素并获得高附加值氧化物的方法。利用XRF、XRD和SEM-EDS等表征手段,确定浸出过程中产物的成分,并分析各级产物的物相及尺寸。试验证明,综合回收利用低品位红土镍矿中的多种有价金属,实现从矿物中直接制备纳米粉末是可行的。  相似文献   

8.
针对传统硫酸化焙烧红土镍矿能耗高、设备腐蚀大等缺点,采用硫酸铵焙烧-水浸处理红土镍矿的工艺;考察硫酸铵焙烧过程中焙烧剂硫酸铵用量、焙烧温度、焙烧时间对有价金属回收率的影响,并对红土镍矿硫酸铵焙烧热力学进行分析。结果表明:在矿料与硫酸铵质量比4:3、焙烧温度400℃、焙烧时间90 min的工艺条件下,红土镍矿中Ni、Co、Mn的回收率分别达到90.8%、85.41%和86.74%,而Fe的回收率仅为9.98%,达到选择性提取有价金属的效果。升高温度有利于蛇纹石相与硫酸铵的反应,抑制镁铁矿石的反应,从而抑制该部分Fe的硫酸化。经适当条件焙烧后,目标金属以硫酸盐形式进入水相,而Fe主要以不溶于水的形式存在。  相似文献   

9.
镍铁冶炼工艺对比—高炉、电炉、回转窑   总被引:1,自引:0,他引:1  
我国使用火法利用红土镍矿冶炼镍生铁,使不锈钢生产原料构成发生了重大变革,改变了全球不锈钢生产原料镍的供需格局,也改变了世界不锈钢产业发展的格局。低成本利用矿石质量较差的红土镍矿资源,符合资源节约型的历史发展趋势,翻开了我国不锈钢生产史的新篇章。目前,高炉法的低品位产品市场容量已经饱和,加快发展电炉、回转窑工艺,可以进一步扩大红土矿火法镍的市场容量。  相似文献   

10.
武信 《轻金属》2013,(2):52-55
采用了HSC chemistry 5.0热力学分析软件、XRD、SEM及EDS等方法与手段,对碳热还原法从红土镍矿中提取金属镁过程进行了热力学分析及实验研究。研究结果显示,碳热还原提取金属镁过程主要由Mg2SiO4、Fe2O3、MgSiO3、MgFe2O4及少量NiO等参与反应。热力学研究表明,常压下MgFe2O4、Mg2SiO4与MgSiO3碳热还原生成金属镁蒸汽的初始温度在1373~2073K,Fe2O3、NiO碳热还原生成金属铁、镍的初始温度分别为923K、723K;在真空压力为10Pa时,MgFe2O4、Mg2SiO4与MgSiO3碳热还原生成金属镁蒸汽的初始温度均在923~1323K,Fe2O3、NiO碳热还原生成金属铁、镍的初始温度分别为673K、523K。试验结果表明,碳热还原法从红土镍矿提取金属镁过程是可行的,冷凝物含金属镁的平均含量达98.5%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号