首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了经开坯锻造的Ti-22Al-24Nb合金在不同固溶温度下的显微组织变化规律。结果显示:开坯锻造后Ti-22Al-24Nb合金的显微组织为等轴三相(α_2+B2+O)组织。随固溶温度的升高,初生板条状O相和等轴α_2相转变为B2基体相,B2相的体积分数逐渐增大。当固溶温度为1000℃时,B2相发生再结晶,出现了细小晶粒组织。固溶温度升高到1040℃时,晶粒明显长大,达200μm左右,且未溶解的初生α_2/O相也有所长大。油冷过程中,由于再结晶时间充分,晶粒变大。  相似文献   

2.
采用正交试验研究不同热处理工艺对Ti55531合金显微组织和力学性能的影响。结果表明,显著影响合金显微组织和力学性能的因素依次是固溶温度、时效温度、时效时间。随固溶温度的升高,初生α相含量明显减少,α相的等轴性表现较好且分布更加均匀,抗拉强度逐渐增加,伸长率下降;随时效温度的升高,次生α相开始增加、长大,组织向双态组织转变,使得抗拉强度下降,伸长率增加。其合理的"固溶+时效"热处理工艺为"820℃×2h固溶,空冷+580℃×10h时效,空冷",抗拉强度为1 370MPa,伸长率为8.5%。  相似文献   

3.
研究了Ti-22Al-25Nb合金等轴组织的演变及其对拉伸性能的影响。结果发现,经α_2+O+B2三相区等温锻后,在O+B2两相区固溶过程中,组织中初始O相板条粗化变短,冷却析出的细板条则溶解到B2基体中,α_2/O相颗粒不发生明显变化,固溶温度升高使得少量等轴O相发生溶解,rim O相厚度减小。而在O+B2两相区时效的过程中,大量细密的二次O相板条从B2基体析出,少量被rim O包围的α_2相向O相转变。时效温度升高时,析出的二次板条O相变得粗大,总体含量减少,rim O厚度增加。时效温度的升高还使得合金强度下降而塑性增加。  相似文献   

4.
采用XRD、SEM、TEM及显微硬度测试等手段,系统研究了TC21合金固溶处理后的相变以及合金在550~850℃时а"相在时效过程中的分解机制及组织演变规律,结果表明:1000℃固溶30 min淬火后,TC21合金形成а"马氏体,且合金中存在少量β及O相(Ti2AlNb);随时效温度的升高,а"相逐步发生а"→а+а"_高→а+β_(亚稳)→а+β,а"+а'+β_(亚稳)→а+β,а"→а+β等分解过程;TC21合金的显微硬度依赖于时效温度和时效时间,时效时间延长,合金显微硬度先迅速增大,达到最大值后再逐渐减小.时效温度升高时,合金显微硬度达到最大值的时间缩短,且合金最终的显微硬度随时效温度的升高而降低.  相似文献   

5.
对Ti-3.5Al-4.5Mo-6V-2Cr-1.5Sn-0.4Fe合金机械锻件进行了固溶和时效处理,研究了固溶温度、时效温度和时效时间对锻态合金显微组织的影响。结果表明,两相区固溶处理后进行时效处理,合金主要由初生α相、次生α相和β相组成,合金中初生α相在一定程度上可以限制β晶粒的长大,随时效温度的升高,次生α相逐渐粗化和长大;单相区固溶处理后进行时效处理,合金组织主要由次生α相和β相组成,次生α相的体积分数随时效温度的升高而降低,而α相的宽度逐渐增加。  相似文献   

6.
《铸造技术》2016,(3):441-444
对B和C微合金化的Ti-3.5Al-5Mo合金医疗器械进行了固溶与时效热处理,观察了不同热处理制度下钛合金的组织与力学性能变化。结果表明,经过固溶与时效热处理的钛合金中出现了细小的Ti B相或者Ti C相,并且可以有效抑制合金中β晶粒的长大,同时还存在细小的次生α相;当时效热处理制度选定为550℃×6 h时,随着固溶温度的上升,抗拉强度和屈服强度逐渐降低,断后伸长率和断面收缩率也表现为逐渐降低的趋势;在790℃×1.5h固溶+550℃×6 h时效时可以取得最好的强度与塑性结合。  相似文献   

7.
采用OM、XRD、导电率和硬度测试等分析方法研究了固溶时效工艺对Cu-4Ni-2Sn-Si合金的显微组织及性能的影响。结果表明,热轧态Cu-4Ni-2Sn-Si合金中未溶解的第二相Ni2Si颗粒随着固溶温度的升高逐渐回溶,且发生再结晶,再结晶晶粒逐渐长大。当温度升高至900℃时,第二相粒子基本回溶到合金基体中。经时效处理后,合金的硬度受到析出相与再结晶的交互作用的影响。当时效温度低于450℃时,硬度值随时效时间的延长呈现先增大后减小的趋势;而时效温度升高至500℃时,合金硬度值随时效时间的延长而逐渐下降。而导电率则随时效时间的延长一直保持增大的趋势。热轧态Cu-4Ni-2Sn-Si合金经900℃×1 h固溶处理+68%冷轧变形+450℃×6 h时效处理后获得较优的综合性能,其硬度值为225 HB,导电率为24.5%IACS。  相似文献   

8.
研究了Ti-22Al-25Nb合金的显微组织和力学性能,重点介绍了等温锻造温度、固溶时效处理对合金力学性能的影响规律。结果表明:随着等温锻造温度的升高,合金的强度和塑性先增加后降低。在O+B2两相区固溶时,随着固溶温度的升高,具有较高塑性的B2相体积分数的增加和等轴颗粒的减少是合金具有较高塑性的主要原因;而在α_2+B2+O3相区固溶时,片层厚度的减小有利于合金强度的提高,但过大的B2相晶粒尺寸和较细的片层厚度则对合金的塑性不利。相的含量、形态、尺寸对合金力学性能的影响较大,尽可能在B2相变点附近进行等温锻造,以控制等轴颗粒数量和B2相晶粒尺寸,在低温时效以获得较细的片层组织从而提高合金的强度和塑性。  相似文献   

9.
主要通过SEM和TEM观察固溶时效过程β-CEZ钛合金ω相和α相的组织变化规律。发现β-CEZ合金在固溶处理后析出尺寸1~2 nm的无热ω相,在350~500℃时效处理时,ω相辅助形核析出长100~200 nm的针状α相,且随着时效温度升高,α相数量增多,尺寸略有长大。当时效温度达到550℃时,ω相基本消失,α相继续长大到约300nm。当时效温度升高到650℃以后,晶界析出大量的长条状α相,晶内α相长度长大到数微米。  相似文献   

10.
研究了固溶和时效热处理对挤压铸造6063铝合金显微组织和力学性能的影响,并分析了热处理工艺参数的影响机理。结果表明,随着固溶时间从15 min增加至120 min,6063铝合金中晶粒尺寸不断变大,晶界和晶内Mg_2Si相逐渐消失并回溶至基体,而固溶时间对α-Al_8Fe_2Si和β-Al_5FeSi相影响较小,合金的强度和硬度则表现为先增大后减小,伸长率表现为先减小后增大的特征;当时效温度从160℃增加至180℃,6063铝合金中第二相逐渐增多,而时效温度为200℃时合金中第二相会发生粗化,6063铝合金的强度和硬度会随着时效温度升高而先增加后减小,伸长率则随着时效温度升高先减小后增大;时效时间在3 h及以下时,6063铝合金中次生第二相数量较少,当时效时间增加至5 h时,弥散分布的第二相会逐渐增多,在时效时间达到12 h及以上时第二相发生明显粗化与长大;6063铝合金适宜的热处理制度为535℃×60 min+180℃×7 h,此时6063铝合金具有最大的强度、硬度以及较高的伸长率。  相似文献   

11.
研究了不同固溶和时效工艺对GH4169合金组织及硬度的影响。结果表明,固溶温度为900~1000℃时,GH4169合金的微观组织无明显变化,硬度随固溶温度的升高略有下降。1050℃以上固溶时,随着固溶温度的升高和固溶时间的增加,再结晶晶粒迅速长大,同时硬度也显著下降。1100℃固溶45 min后再结晶完成,硬度也基本不变。时效温度和时效时间对GH4169合金中的强化相析出有显著影响,表现为硬度的显著差异,720℃时效16 h后GH4169合金的硬度达到最高。  相似文献   

12.
研究了固溶处理后不同时效温度对Ti-5Al-2V-3Fe-0.2O合金热轧板材显微组织与力学性能的影响。结果表明:热轧态板材组织主要由α相和β相组成;固溶处理后,组织中出现了α相向β相转变现象,由初生α相及亚稳态β转变组织组成;通过时效处理,亚稳态β转变组织部分分解,析出次生α相并形成晶间β相,随着时效温度从450℃升高到550℃,亚稳态β转变相进一步减少,次生α相增多并长大,初生α相逐渐粗化;与热轧态相比,固溶时效处理后板材抗拉强度和断后伸长率均提高,并且随着时效温度升高,抗拉强度逐渐降低,伸长率逐渐提高;940℃×15min/AC+500℃×6 h/AC热处理后的板材强度和伸长率分别达到1260 MPa、8.5%,具有较佳的综合性能。  相似文献   

13.
采用OM、SEM和XRD等方法研究了固溶时效热处理对近β型钛合金(Ti-3Al-6Mo-2Fe-Zr)显微组织、力学性能及耐腐蚀性能的影响。结果表明,随着固溶温度的升高,初生α相的含量逐渐降低,经930 ℃固溶处理后,合金为单一β相。固溶温度在830 ℃以下时,随着固溶温度的升高,初生α相逐渐转变为β相,第二相强化作用减弱,合金强度逐渐降低,塑性逐渐提高,断裂方式为微孔聚集型;固溶温度在830 ℃以上时,随着固溶温度的升高,β相晶粒逐渐粗化,合金强度降低,塑性下降,断裂方式由微孔聚集型断裂向解理断裂转变。随着固溶温度从780 ℃升高至930 ℃,初生α相的含量降低,β/α相界逐渐减少,耐腐蚀性能提升。经780 ℃固溶1 h(水冷),500 ℃ 时效6 h(随炉冷却)处理后,细小针状的次生α相于亚稳β相中沉淀析出,合金强度显著提高,但塑性下降。  相似文献   

14.
采用金相显微镜、扫描电镜和硬度测试等手段,研究了固溶和时效热处理对Mg-Nd-Zr合金组织和性能的影响。结果表明,合金经460~520℃固溶处理后,随着固溶温度的升高和保温时间的延长,铸态组织中晶界上的化合物逐渐溶解,当固溶温度过高和保温时间过长时,晶粒长大。合金经490℃×8h固溶处理后时效,随着时效时间的延长,固溶时残留的第二相逐渐溶解,均匀析出第二相,合金硬度逐渐增大,达到峰值后进入过时效阶段,析出的第二相变大,硬度值下降。Mg-Nd-Zr合金的最佳热处理工艺为经490℃×8h固溶处理后,进行225℃×4h时效。  相似文献   

15.
研究了不同温度的固溶和时效工艺对Ti2041合金组织和硬度的影响。结果表明:当固溶温度为700℃时,随着保温时间增加,组织中初生α相(αp)的含量逐渐增多,晶粒尺寸逐渐增大;当固溶温度为750℃时,随保温时间增加,发生了静态再结晶,且有次生α相(αs)析出,晶粒尺寸也逐渐增大;当固溶温度为800℃时,晶粒内部出现α′马氏体,形貌由等轴状变为板条状。在不同固溶温度下硬度值变化也不同,当固溶温度为700℃时,随着保温时间的增加,硬度(HV)值从3016 MPa降到2852 MPa;在固溶温度为750℃时,硬度值随着保温时间的增加先升高后降低,最大值为3082 MPa;在固溶温度为800℃时,硬度值随着保温时间的增加逐渐增大,最大值为3314 MPa。在经时效处理后,不同时效温度下均出现了次生αs相。随时效温度的升高,次生αs相尺寸越小,显微硬度值逐渐增大,最大值达到4517.5 MPa,主要强化机制为第二相(次生αs相)弥散强化。  相似文献   

16.
对A286铁基高温合金进行固溶温度+时效两段式热处理工艺优化研究。采用固溶热处理制度为930~1020℃/4 h/WC,固溶时间为0~4 h。合金时效研究采用640~790℃/4 h/AC热处理;在时效温度730℃条件下,研究0~16 h时效时间对合金组织及性能的影响。结果表明:随着固溶温度上升和时间延长,合金晶粒尺寸有一定程度长大,但硬度逐渐下降;随着时效温度提高及时间延长,合金的硬度先升高而后降低;在固溶热处理过程中,合金随着固溶处理温度提高及时间的延长,γ'相回溶入基体;当固溶后的时效温度提高至700℃才析出γ'强化相;随着时效时间延长,析出的γ'强化相发生粗化;合金时效γ'强化相粗化过程符合Ostwald熟化长大规律,计算值与实际值相关系数大于97%;同时,确定了最佳的热处理工艺制度。  相似文献   

17.
李东  周敬 《金属学报》1990,26(6):A443-A448
研究了Ti_3Al-Nb合金在高温下的有序化,冷却过程高温β相转变及时效过程亚稳定β相分解的行为,结果指出,在1060℃固溶处理时,合金形成初生α_2和β高温有序相;在固溶处理后的冷却过程中,合金发生β→α_2+ω型转变;在700℃时效过程中,合金发生(β+ω型)亚稳→(α_2+β)稳定分解。  相似文献   

18.
李东  周敬  常昕  关少轩 《金属学报》1990,26(6):57-62
研究了Ti_3Al-Nb合金在高温下的有序化,冷却过程高温β相转变及时效过程亚稳定β相分解的行为,结果指出,在1060℃固溶处理时,合金形成初生α_2和β高温有序相;在固溶处理后的冷却过程中,合金发生β→α_2+ω型转变;在700℃时效过程中,合金发生(β+ω型)亚稳→(α_2+β)稳定分解。  相似文献   

19.
研究固溶温度和时效温度对Ti62421s高温钛合金显微组织、相成分和常温拉伸性能的影响。结果表明:在两相区进行固溶处理时,随着固溶温度的升高,合金组织中的α相减少,β转变组织(βt)增多,当固溶温度进入β相区后为篮网状β转变组织;随着时效温度的升高,α相长大;随着固溶温度和时效温度的升高,β转变组织中只有Al含量升高,其他合金元素的含量都下降;随着固溶温度的升高,强度和断面收缩率先升高后迅速降低,伸长率逐渐下降;经(980℃,1h,AC)+(550℃,8h,AC)热处理后,合金可以获得较好的综合性能,抗拉强度达1077.04MPa,伸长率达13.6%,断面收缩率为26.02%。  相似文献   

20.
采用正交试验法研究了固溶温度、时效时间等因素对TA12钛合金力学性能与组织的影响。结果显示,固溶温度对合金强度影响较大,时效时间对合金塑性影响较大。采用固溶温度980℃,固溶时间45 min,时效温度540℃,时效时间8 h,TA12合金获得较好的综合性能,其抗拉强度1233.32 MPa,屈服强度1126.05 MPa,伸长率9.04%,组织为少量的等轴初生α相和固溶时效后析出的弥散状次生αs相。随固溶温度的升高,合金抗拉强度和屈服强度升高,表现为线性关系,塑性降低,但变化比较小;随时效时间延长,钛合金抗拉强度和屈服强度先升高后降低,但变化不大,合金塑性先降低后升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号