首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

2.
利用Gleeble-3800热模拟机研究Incoloy901高温合金在变形温度950~1150 ℃,应变速率0.005~1 s-1,真应变0.6下的热变形行为。结果表明:变形温度大于1000 ℃,应变速率大于0.01 s-1时,Incoloy901合金真应力-应变曲线呈现动态再结晶特征。根据应力-应变曲线构建Incoloy901合金的本构方程与热加工图,得出形变激活能Q=439.401 kJ/mol,最佳热加工工艺为:变形温度1050~1150 ℃,应变速率0.005~0.1 s-1,在此工艺范围内合金的高温变形功率耗散系数η较高,可达37%,能获得较好的动态再结晶组织。  相似文献   

3.
GH625镍基合金的高温压缩变形行为及组织演变   总被引:2,自引:0,他引:2  
在Gleeble-1500D热模拟机上采用等温压缩实验研究GH625合金的高温压缩变形行为,获得合金在温度为1000~1200℃、应变速率为10-2~10s-1的条件下的真应力—应变曲线,并在考虑摩擦和变形热效应的基础上对真应力—应变曲线进行修正。对修正后的峰值应力进行线性回归,得到合金的高温材料常数:Q=635.38kJ/mol,α=0.008404MPa-1,n=3.52。通过非线性回归建立GH625合金包含应变量的高温变形本构模型。在应变速率为0.1s-1时,随着热变形温度的升高,合金发生动态再结晶的体积分数随之增加,在1000~1100℃发生部分动态再结晶,当温度达到1200℃时,发生完全动态再结晶,此时平均晶粒尺寸约为22.21μm。  相似文献   

4.
利用Gleeble-3800热模拟试验机,在温度为950~1150℃、应变速率为0.01~10 s~(-1)、变形量为60%条件下,研究汽轮机叶片用GY200镍基合金的高温塑性变形及动态再结晶行为,并绘制了合金的热加工图。结果表明:GY200合金的真应力–应变曲线具有动态再结晶特征,峰值应力随变形温度的降低或应变速率的升高而增加,发生动态再结晶的临界应变随温度增加而降低。在真应力–应变曲线的基础上,建立了材料热变形本构方程,其热激活能为353.792 kJ/mol,表明利用W替代合金中的Mo后,降低了合金的热激活能。合金的最佳热加工的温度区间为1000~1150℃,应变速率0.01~0.1 s~(-1),效率值达到0.3以上。  相似文献   

5.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

6.
利用Gleeble 1500+热模拟试验机研究了镍基690合金在800~1300℃温度范围内,应变速率在0.1~10 s~(-1)范围内热压缩过程中合金的热变形行为。结果表明,690合金在热压缩过程中产生的流变应力受变形温度和应变速率两个参数的显著影响,其对应的峰值应力随变形温度的降低和应变速率的增加而增大。利用数据拟合计算得到热变形激活能等参数,建立了用于表征峰值应力和变形温度、应变速率之间相互关系的690合金热变形本构方程。基于动态材料模型绘制了690合金的热加工图,结合该合金在不同变形温度-应变速率区域的高温变形特征以及显微组织形貌,获得了两个适合690合金热加工的变形温度-应变速率区域。  相似文献   

7.
采用热压缩试验研究了铸态C-276镍基高温合金在950~1250℃和0.01~10 s~(-1)条件下的热变形行为。结果表明:该合金的热变形流变应力随着变形温度的增加及应变速率的降低而减小;当变形条件为1250℃、0.1 s~(-1)时,合金在热压缩过程中发生了动态应变时效。基于流变应力数据建立了合金的热变形本构方程;基于动态材料模型建立了合金在不同应变下的热加工图。通过加工图和微观组织观察优化了合金的热变形参数。合金的表观激活能为497k J/mol铸态C-276合金适宜的热加工区域为1050~1250℃和应变速率0.1~1.0 s~(-1)。  相似文献   

8.
采用Thermomacmaster-Z热模拟试验机和TEM研究了G3、G3-Z和825镍基耐蚀合金1030℃~1350℃、应变量(ε)0~0.8、变形速率5s-1、25s-1的应力-应变曲线和温度对合金变形抗力和断面收缩率的影响。结果表明,随着温度的升高,合金的变形抗力及其最大值降低,断面收缩率先上升后下降。825合金的高温变形抗力低于G3及G3-Z合金,而热塑性优于G3及G3-Z合金;锻态G3合金高温变形抗力大于铸态G3-Z合金,而高温热塑性优于G3-Z。G3、G3-Z、825合金的热加工最高温度分别为1240℃、1220℃和1240℃。  相似文献   

9.
TC4钛合金的热变形行为及其影响因素   总被引:9,自引:1,他引:8  
利用Gleeble1500热模拟机测试了Ti6Al4V合金在不同温度和不同应变速率下的真应力真应变曲线,观察热变形前后的组织,分析变形温度、应变速率、原始组织和热处理工艺对合金的热变形行为的作用及影响规律。结果表明,在应变速率为8.3×10-3s条件下,合金在600℃热变形时软化机制以动态回复为主,800℃至900℃热变形时软化机制以动态再结晶为主;700℃热变形时动态回复和动态再结晶可同时发生。淬火和时效可提高合金的热变形抗力。合金在600℃变形时,热变形抗力对在8.3×10-2s-8.3×100s范围变化的应变速率敏感性较差;当应变速率降至8.3×10-3s-1时,热变形抗力有较大幅度的降低。在相同的变形条件情况下,魏氏组织的流变应力高于等轴组织。  相似文献   

10.
Inconel625高温合金J-C本构建模   总被引:1,自引:0,他引:1  
为了研究Inconel625高温合金在较高温度和应变率变化范围内的热变形行为,采用CSS电子万能试验机和分离式霍普金森压杆试验装置对Inconel625高温合金进行准静态试验和霍普金森压杆试验,在温度为20~800℃、应变率为0.001~8000 s~(-1)范围内得到Inconel625高温合金的真实应力—应变曲线。结果表明:随着温度的升高,Inconel625高温合金的流动应力与屈服应力并不单一地随应变率增大而增大,同一温度条件下,随着应变率的增加,Inconel625高温合金的真实应力先增大后减小(分界线是应变率为6000 s~(-1));同一应变率条件下,Inconel625高温合金的真实应力随着温度的升高而减小。基于Johnson-Cook模型对其真实应力-应变曲线进行拟合分析,经过计算得到模型的预测值与实验值的相关性和绝对误差,并进一步改进Inconel625高温合金的Johnson-Cook本构模型,使模型能够更好地反映Inconel625高温合金在较高温度和应变率变化范围内的热变形规律。  相似文献   

11.
对Cu-Sn合金进行高温等温压缩实验,热压缩应变速率为0.01 s~(-1)、热变形温度为500~700℃。利用EBSD技术分析了该合金的高温变形及组织特征。结果表明:热压缩真应力-真应变曲线反映了加工硬化与动态回复与再结晶的对抗过程,具有明显的软化趋势,说明Cu-Sn合金是热敏感型合金。随着温度的升高,Cu-Sn合金变形抗力逐渐减小,随着应变量的增加,各变形条件下都存在不同程度的加工硬化现象。在500~550℃Σ(CSL)晶界逐步向Σ3晶界转化;同时,一些具有特殊位向差的大角度晶界能量比其它任意位向差的大角度晶界能量低,易发生晶界的迁移与滑动。  相似文献   

12.
采用Gleeble-3500热模拟试验机在温度为400℃~500℃,应变速率为0.01 s~(-1)~10 s~(-1)条件下对Al-7.0Zn-2.9Mg合金进行热压缩试验,研究该合金的热变形行为及热加工特征,建立了应力-应变本构方程和加工图。结果表明,Al-7.0Zn-2.9Mg合金在热压缩变形过程中,随着应变速率的增加和变形温度的降低,合金流变应力逐渐增大,流变应力达到峰值后曲线呈现稳态流变特征;合金在试验条件下的平均变形激活能为157.8 k J/mol。真应变为0.5的加工图表明,该合金在400℃~500℃高温变形时安全区域主要存在于低应变速率的条件下,较合适的加工温度为450℃~475℃,应变速率为0.1 s~(-1)~0.01 s~(-1)。  相似文献   

13.
Inconel 625合金高温高速热变形行为   总被引:1,自引:0,他引:1  
通过等温热压缩实验研究Inconel 625合金的高温高速热变形行为,获得了合金在温度为1000~1200℃、应变速率为1~80 s-1的条件下的真应力-应变曲线,并在考虑变形热效应的基础上对真应力-应变曲线进行了修正。对修正后的峰值应力进行线性回归,得到材料的材料常数:Q=442.97 kJ/mol,n=4.49,α=0.0029 MPa-1。通过非线性回归建立了Inconel 625合金在高温高速条件下的本构模型。  相似文献   

14.
用Gleeble-3500型热模拟试验机对TC4钛合金在变形温度750~950℃、应变速率0.1~50 s-1、最大变形量为50%条件下进行高温变形试验,进而分析了变形参数对变形抗力的影响.结果表明,高温压缩时,TC4钛合金的真应力-真应变曲线呈现出明显的动态再结晶特征;变形抗力受变形温度和应变速率的影响显著,受应变的影响较小,随变形温度的升高、应变速率的减小,变形抗力显著降低.最后提出了一种新型TC4钛合金高温变形的变形抗力模型,该模型拟合精度较好,计算值和实验数据的平均相对误差为5.25%,可以为热轧提供可靠的计算数据.  相似文献   

15.
通过热压缩实验,研究了GH3230合金在温度950~1220℃和应变速率0. 1~10 s~(-1)条件下的高温热变形行为,构建了高温变形抗力数学模型,并分析了微观组织的变化。结果表明:随着应变速率的增加和变形温度的降低,材料的高温变形抗力增大;变形温度的提高和应变速率的增加有利于动态再结晶的发生和动态再结晶晶粒的长大; GH3230合金高温变形抗力可用Zener-Hollomon参数的高精度双曲正弦函数描述,其中热变形材料常数为:A=1. 22279×1028,n=8. 64987,α=0. 00284,平均变形激活能Q=742. 335 k J·mol~(-1);对于GH3230合金,采用高温和低应变速率可以获得优良的热加工等轴晶粒组织和低的加工变形抗力。  相似文献   

16.
利用Gleeble-3500热模拟机对铸态纯镍N6在压缩量50%下进行了热压缩试验,研究了在应变速率0.01~10.00 s~(-1)、变形温度800~1200℃下,纯镍N6的高温流变行为。通过热模拟试验得到了纯镍N6在不同温度及应变速率下的真应力-真应变曲线,并根据动态材料模型推导出了热加工图。结果表明,纯镍N6对变形温度及应变速率较敏感,其合理热加工温度范围为1000~1150℃,应变速率为0.01~0.32 s~(-1)。  相似文献   

17.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

18.
Ni76Cr19AlTi合金的热变形行为   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Ni76Cr19AlTi合金棒材进行恒温和恒速压缩变形实验,变形温度范围为80m-1150℃,应变速率范围为10^-3—10^0S^-1.结果表明,实验合金在800和850℃热压缩时变形抗力较大,容易发生开裂;而在950—1150℃温度范围内热变形由于发生动态再结晶,合金变形抗力减小,变形容易进行,不会发生开裂.研究了合金在高温塑性变形过程中流变应力的变化规律,确定了合金在950-1150℃范围内的变形激活能Q为376.84kJ/mol,应力指数n为4.15.对合金的热压缩变形真应力-真应变曲线及变形机制的分析表明,合理的变形条件为105m-1150℃及10^-1-10^0s^-1.  相似文献   

19.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Zr合金在应变速率为0.001~10 s~(-1)、变形温度为550~900℃、最大变形程度为55%条件下的流变应力行为进行探讨。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并对其在热压缩过程中的组织演变进行观察。结果表明:热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。结合流变应力、应变速率和变形温度的相关性,计算得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和本构方程。合金动态再结晶的显微组织强烈受到应变速率的影响。  相似文献   

20.
利用Gleeble-3800热模拟试验机对新型Co-Ni基高温合金进行热压缩试验,研究其在变形温度为950~1100℃、应变速率为0.01~10 s-1、真应变为0.693时的热变形行为和微观组织演变。结果表明,合金流动应力随变形温度的升高或应变速率的降低而减小。合金平均晶粒尺寸随变形温度的升高而增加,降低变形温度和提高应变速率可细化动态再结晶晶粒。基于EBSD和TEM分析表明,合金热变形过程中非连续动态再结晶(DDRX)作为主要动态再结晶(DRX)机制,孪晶形核作为辅助形核机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号