首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
铬含量对薄壁高强度桩管钢腐蚀性能的影响   总被引:1,自引:0,他引:1  
采用电化学性能测试、半浸泡试验及SEM、EDS分析研究了铬含量对薄壁高强度桩管钢耐腐蚀性能的影响。结果表明,试样在3.5%盐溶液中一直处于活化状态;随着铬含量增加,薄壁高强度桩管钢试样自腐蚀电位相差不大,但腐蚀电流密度降低,电荷转移电阻增大;试样在盐溶液-大气界面处腐蚀最为剧烈。随着铬含量的增加,钢的耐蚀性不断提高,当铬质量分数为2%时,试样耐蚀性最好,年腐蚀速率为0.023 4mm/a。铬元素在锈层中出现富集现象,但在液-气界面区和浸泡区表现出不同的特征:铬元素在浸泡区富集于与基体接触的内锈层区,而在液-气界面区富集于远离基体的外锈层区。  相似文献   

2.
采用周期浸润腐蚀实验和电化学测试方法,结合扫描电镜(SEM)、电子探针(EPMA)等表面测试技术研究了690 MPa级耐候桥梁钢焊接接头在模拟工业大气环境下的耐蚀性。结果表明,在腐蚀初期,由于微观组织的不同,以铁素体为主的焊缝区耐蚀性优于贝氏体为主的母材区,同样由于晶粒粗大且分布不均匀导致贝氏体组织的热影响区耐蚀性最差,焊接接头不同微区域未发生明显电偶腐蚀;在腐蚀后期,Cu、Cr等在焊接接头不同区域的锈层中明显富集,Ni在焊缝区锈层中富集量远高于母材区和热影响区,焊缝区由于合金元素含量较高使其锈层更加平整致密且具有较高的极化电阻和阻抗值,导致整个焊接接头的耐蚀性能好于母材。  相似文献   

3.
采用周期浸泡腐蚀试验技术,结合电子探针以及XRD物相分析等手段,研究了桥梁钢Q500qENH及其焊缝和普通Q345B钢在模拟工业大气环境中(0.01 mol/L NaHSO3水溶液)的耐腐蚀性能。结果表明,桥梁钢内外锈层分明,锈层较致密,且在内锈层中检测到Cr有明显富集,其年腐蚀速率也相对较低。Q345B钢的锈层疏松,内外锈层没有明显分界。桥梁钢锈层都是由α-FeOOH、γ-FeOOH和Fe3O4组成的。桥梁钢中物相α-FeOOH含量较多,Cr分布于内锈层的裂纹处,使内锈层更加致密。  相似文献   

4.
采用电化学测试、浸泡实验及SEM、XRD等方法研究了热轧态Cr、Ni微合金化高强度耐候钢组织及耐蚀性能。结果表明:热轧态高强度耐候钢试样组织均由珠光体和铁素体组成,Cr在两相中均匀分布,Ni在铁素体相中含量更多。Cr、Ni含量较高的Q700H耐候钢在3.5%(质量分数)NaCl溶液中具有较低的年腐蚀速率。浸泡60 d后,两种钢自腐蚀电流密度增加,但Q700H钢具有较高的电荷转移电阻和较小的自腐蚀电流密度。浸泡150 d后,Q700H钢表面的点蚀坑较Q500H钢表面的更细小。Cr、Ni含量的增加促进了锈层中致密α-FeOOH的生成;Cr、Ni在锈层中发生富集,Cr集中在内锈层,Ni富集于基体和锈层界面处,且随Cr、Ni含量增加,富集越明显。  相似文献   

5.
用盐雾加速和极化曲线试验方法研究了TRIP钢在3.5%NaCl溶液中的腐蚀电化学行为。结果表明:两种试样盐雾加速试验后表面均有大面积腐蚀产物出现,且极化曲线均活化。未添加合金元素(A钢)的腐蚀率远高于添加合金元素的(B钢);B钢较A钢的自腐蚀电位明显升高,其腐蚀电流密度下降;B钢表面锈层较为致密,而A钢锈层则相对较为疏松。B钢获得了相对较好的耐蚀效果,主要原因是由于Al、Cu、Cr、Mo、Ni等合金元素在锈层以及锈层与基体的界面中富集,改变了TRIP钢电化学性质所致。  相似文献   

6.
姜杉  王瑞珍  侯清宇  苏航 《热加工工艺》2012,41(18):72-75,79
采用人工海水对含有相同基本成分的C钢和添加了0.95%Cr元素的Cr钢进行120h的流动冲刷腐蚀试验.利用SEM和XRD等方法研究了Cr元素对普碳钢锈层的形貌、物相构成及相对含量的影响.结果表明,经冲刷腐蚀以后,含Cr钢的腐蚀质量损失小于C钢的.对两种钢的锈层分析表明,两种实验钢的锈层均出现分层现象,普碳钢外锈层疏松多孔,而含Cr钢的外锈层呈块状,致密性明显优于碳钢,内锈层亦是如此.两种钢的外锈层均由Fe3O4、α-FeOOH和γ-FeOOH等物相构成;C钢的内锈层由Fe3O4构成,Cr元素在含Cr钢锈层中的富集没有改变外锈层的物相类型,但内锈层则由Fe3O4转变为β-FeOOH.  相似文献   

7.
桥梁耐候钢在含Cl~-离子环境中的腐蚀行为   总被引:1,自引:0,他引:1  
选择3种Ni含量为3.5%的桥梁钢,采用干湿周浸加速腐蚀实验模拟海洋大气环境下桥梁钢的耐腐蚀性能变化,并利用金相显微镜、XRD和SEM等分析了不同Mn和Cu含量桥梁耐候钢组织以及其腐蚀不同时间的腐蚀形貌和锈层特征.结果表明:桥梁耐候钢的组织由准多边形铁素体、针状铁素体和粒状贝氏体组成;随着Mn含量的增加,钢的耐蚀性能增加;Ni和Mn在锈层中均匀分布,Cu在锈层的缝隙或孔洞等缺陷处富集.锈层主要由Fe_3O_4,γFeOOH和α-FeOOH组成,腐蚀不同时间后的试样锈层组成相有所不同;γ-FeOOH和α-FeOOH与钢的腐蚀速率密切相关;增加Mn含量可以促进γ-FeOOH和α-FeOOH的生成,同时抑制γFeOOH和αFeOOH的晶粒长大.  相似文献   

8.
利用热轧实验研究了高Cr耐蚀钢的显微组织和力学性能,并利用周期浸润腐蚀实验研究了其在模拟工业大气环境下的腐蚀演化及电化学腐蚀行为。结果表明:高耐蚀钢的显微组织主要为铁素体+贝氏体,屈服强度为460 MPa,抗拉强度为678 MPa,伸长率为24%;高耐蚀钢具有优异的抗腐蚀性能,相对腐蚀速率为27%;实验钢的腐蚀产物均为α-Fe OOH、γ-Fe OOH和Fe3O4的混合物,但相对含量不同;Cr元素富集于锈层裂纹、孔洞中,有利于致密均匀锈层的形成,阻挡腐蚀介质;高耐蚀钢的自腐蚀电位随腐蚀时间增加而提高,自腐蚀电流密度下降,而Q345B钢由于锈层疏松,自腐蚀电位及电流均呈相反的趋势。  相似文献   

9.
合金元素对耐候熔敷金属力学及耐蚀性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用周浸加速腐蚀试验,模拟工业大气腐蚀环境,通过组织分析、锈层微观成分及形貌分析、电化学分析等手段,研究了Ni,Cr,Cu元素对耐候熔敷金属耐蚀性能及力学性能的影响规律. 结果表明,Ni元素有利于增加组织中针状铁素体含量,提高熔敷金属−40 ℃冲击韧性,Cr元素增加,熔敷金属−40 ℃冲击韧性降低. 合金元素有利于提高腐蚀锈层中的α-FeOOH的含量,增加锈层致密度,提高锈层阻抗,降低自腐蚀电流密度. Cu元素有利于提高熔敷金属腐蚀初期和后期的耐蚀性能;腐蚀初期,Cr元素提高耐蚀性能的作用不如Cu和Ni,但是腐蚀后期Cr提高锈层耐蚀性能的作用明显.  相似文献   

10.
选择Cu-P-Cr-Ni钢、Cu-P-Cr钢和Q235碳钢,在0.01 mol/L的NaHSO3溶液中进行周期浸润、阻抗谱和极化曲线实验,研究了Cu-P-Cr-Ni系合金钢相比Q235碳钢在模拟工业大气(SO2)环境下的耐腐蚀性能;利用SEM,EPMA面扫描和XRD分析腐蚀锈层的形貌、组成及Cu,Cr和Ni的元素分布情况。结果表明:Cu-P-Cr-Ni系钢的腐蚀诱发敏感性最低,其次为Cu-P-Cr钢,腐蚀速率分别为Q235碳钢的59.5%和52.8%;锈层分为内、外两层,致密的内锈层明显发生Cu的颗粒状、Cr的团聚状富集,外锈层主要有Cr的富集,Ni富集不明显。Cu和Cr等的富集可形成致密的内锈层,提高低碳钢的耐蚀性。  相似文献   

11.
本文主要研究了12SiMoVNbAl低合金钢耐含硫原油长期高温腐蚀的锈层之组织结构。用金相及岩相方法观察了锈层的组织结构。锈层主要分里、外两层。里层致密,外层疏松。用电子探针及扫描电镜观察并测定了合金元素在基体金属和锈层中的分布。该钢合金元素含量虽然较低,但仍具有较好的抗高温腐蚀的性能。硅、铝等合金元素在里锈层中的富集是提高其抗高温腐蚀性能的主要原因。  相似文献   

12.
采用周浸加速腐蚀试验技术,结合电子探针以及XRD物相定量分析等手段对比研究了船板钢F690、F460和普通Q235B C-Mn钢在模拟海洋大气环境中(3.5wt%NaCl水溶液)的耐腐蚀性能。结果表明,F690钢形成的锈层表面平整,除锈后未发现明显的点蚀坑存在,内外锈层分明,锈层较致密,且在内锈层中检测到Cr和Mo的明显富集,其年腐蚀速率也相对较低。F460钢锈层中也观测到少量的Cr元素的富集。Q235B的锈层疏松,内外锈层没有明显分界。船板钢锈层都是由α-FeOOH、β-FeOOH、γ-FeOOH和Fe3O4组成的。F690钢中物相α-CrxFe1-xOOH含量较多,Mo分布于内锈层的裂纹处,使内锈层更加致密。  相似文献   

13.
通过中试轧制、电渣压力焊制备了Cu-P-Cr钢及其焊接接头,利用光学显微镜研究了电渣压力焊接接头的组织晶粒度,利用干湿交替实验机、SEM、EPMA、XRD研究了Cu-P-Cr钢及其焊接接头在1.0×10-2mol/L的Na HSO3溶液中的耐腐蚀性能、锈层元素分布及组成,分析了母材与焊接接头的耐腐蚀机理及其影响因素。研究结果表明:焊接接头与母材的腐蚀速率相比碳钢分别为64.6%与61.5%。焊接接头锈层中Cu、Cr元素的大量富集、α-Fe OOH相的转变是腐蚀性能优异的主要原因,而焊缝及熔合区形态各异的铁素体+珠光体+魏氏组织和晶粒尺寸不均等导致了锈层中Cu、Cr富集程度低于母材、腐蚀性能稍弱于母材。  相似文献   

14.
利用周浸加速腐蚀实验与力学性能实验对比研究了新型低碳贝氏体钢、超低碳铁素体钢以及09CuPCrNi钢这3种钢在含氯离子环境中的耐腐蚀性能与拉伸性能的变化.与超低碳铁素体钢和09CuPCrNi钢相比,新型低碳贝氏体钢不仅力学性能提高了,而且耐腐蚀性能亦得到改善,其腐蚀速率明显低于其余2种对比钢,并且随着腐蚀时间的延长其优势更加明显.3种钢的锈层具有相近的相组成,但新型低碳贝氏体钢的腐蚀产物颗粒最细小且锈层最致密,同时在接近钢基体的锈层处Cr和Cu的富集程度最明显且Cl的含量最低.新型低碳贝氏体钢锈层阻碍氯离子透过能力高于其余2种对比钢锈层.  相似文献   

15.
通过腐蚀失重比较了4种不同Cr含量的Q420钢在模拟的高盐度工业大气环境下的耐蚀性能,研究了Cr对Q420钢锈层结构与组成的影响及其作用机理。结果表明,含Cr钢的耐蚀性能优于Q420钢,且9%(质量分数)Cr钢的腐蚀速率最低,耐蚀性最好;Q420钢的腐蚀速率保持稳定,含Cr钢的腐蚀速率先增大后减小,这是因为含Cr钢的锈层随着腐蚀的进行会由初期的不稳定状态转变为稳定状态,耐蚀性得到增强;Cr促进了内锈层中稳定相α-FeOOH的生成,使锈层结构更加稳定、致密,对腐蚀性介质的传递过程起到了显著的阻碍作用。  相似文献   

16.
利用周浸加速腐蚀实验与力学性能实验对比研究了新型低碳贝氏体钢、超低碳铁素 体钢以及09CuPCrNi钢这3种钢在含氯离子环境中的耐腐蚀性能与拉伸性能的变化. 与超低 碳铁素体钢和09CuPCrNi钢相比, 新型低碳贝氏体钢不仅力学性能提高了, 而且耐腐蚀性 能亦得到改善, 其腐蚀速率明显低于其余2种对比钢, 并且随着腐蚀时间的延长其优势更加 明显. 3种钢的锈层具有相近的相组成, 但新型低碳贝氏体钢的腐蚀产物颗粒最细小且锈层 最致密, 同时在接近钢基体的锈层处Cr和Cu的富集程度最明显且Cl的含量最低. 新 型低碳贝氏体钢锈层阻碍氯离子透过能力高于其余2种对比钢锈层.  相似文献   

17.
新日铁开发出新耐大气腐蚀钢材   总被引:1,自引:0,他引:1  
《轧钢》1999,(3):32
新日铁在世界上首次开发出耐盐腐蚀性能非常好的桥梁用耐大气腐蚀钢材(含Ni3%,不含Cr),井已上市。新产品可不经涂层而直接用于沿海地区。其初期费用比现有的、经过涂防腐层的钢材低10。而且,基本不需要桥梁维修费。日本计划在北陆新干线的桥梁(建设中)采用1000t新耐大气腐蚀钢厚板。在耐大气腐蚀钢特有的双层构造锈层的内层(致密的非结晶锈层),使Ni含量增加,这样可抑制氯离子向锈层的内层扩散,这种耐候钢即使是在有大量盐分飞来的环境中使用,其抗盐腐蚀的性能也非常好。以往在沿海建筑桥梁时,为了防止盐分对桥梁的腐蚀,需…  相似文献   

18.
锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响   总被引:23,自引:0,他引:23  
为阐明耐钢表面稳定锈层的抗大气腐蚀机制,研究了人工制备锈蚀层的离子选择性,实验结果表明,在海洋大气中腐蚀4a的耐候钢表面的锈钢产生了分层现象,其内锈层具有较好的阳离子选择性能,阻碍了Cl^-的进入,合金元素在钢腐蚀过程中的重新分配提高了锈层和近界面基体中合金元素的含量。保证了该耐候钢在近海大气中具有较好的抗大气腐蚀性能。  相似文献   

19.
应用电化学阻抗谱研究了在模拟工业大气的腐蚀溶液中Mn对耐候钢耐腐蚀性能的影响,并通过锈层电子探针面扫描验证了实验结果。电化学阻抗谱结果显示,在腐蚀初期高锰耐候钢表现出较强的点蚀反应特征,腐蚀后期则显示和比对钢相同的耐腐蚀能力。在模拟工业大气腐蚀条件下,Mn在耐候钢的内锈层中没有产生富集,Cr 和Cu在内锈层和钢基体界面中形成了富集带,这是保护性锈层生成的主要原因。  相似文献   

20.
采用中性盐雾腐蚀实验对不同Cr与V含量的合金弹簧钢进行了24~288 h的腐蚀实验,用光学显微镜(OM) 观察腐蚀样品的表面宏观形貌,通过扫描电镜 (SEM) 观察腐蚀产物 (简称锈层) 截面情况,用能谱仪(EDS) 分析确定了腐蚀产物中Cr、V和Cl含量与分布情况,用X射线衍射 (XRD) 和Rietveld分析确定了腐蚀产物各锈层相的相对含量。结果表明:当腐蚀时间达到288 h时,钢表面逐渐形成内层 (30~50 μm) 和外层 (100~180 μm) 的两层结构锈层。其中外层主要是由γ-FeOOH组成,很容易剥落;而内层包含α-FeOOH和Fe3O4,结构较致密,与基体结合比较牢固。Cr和V在内层锈层中明显富集,而没有Cl-,说明在内层锈层区域Cl-侵入受到阻止;而外层锈层中Cr和V基本没有富集,且含有一定量的Cl-;通过XRD分析腐蚀的不同阶段和不同部位的锈层成分图谱及相对含量关系,分析了γ-FeOOH形成和γ-FeOOH转化为α-FeOOH的过程。基于上述分析构建了不同相的转化模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号