首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ca2−xPrxMnO4 (0 ≤ x ≤ 0.2) polycrystalline ceramic powders were synthesized by sol-gel method. The X-ray diffraction (XRD) profiles were indexed with a tetragonal and orthorhombic structure for Ca2MnO4 and Pr-doped compounds, respectively. Electrical properties were investigated by dc and ac electrical measurements. The dc measurements have revealed an insulating state for all compounds in 80-350 K temperature range. Both dc and ac measurements have highlighted a charge ordering (CO) transition at TCO = 233 and 245 K for x = 0.175 and 0.2, respectively. The CO state was found to be accompanied by a jump of the hopping activation energy and a rapid rise of both dielectric permittivity and imaginary part of ac electrical impedance.  相似文献   

2.
The Ce2Fe17−xMnx (x = 0-2) compounds demonstrate a complex temperature dependence of the magnetocaloric effect MCE, which is inverse in a narrow temperature interval just below Néel temperature TN and normal at higher or lower temperatures. The normal MCE exhibits two peaks in the vicinity of temperatures of ferromagnetic ordering ΘT and TN for compositions x = 0-0.35, 1.3-2 or one peak near TN for antiferromagnets with x = 0.5-1. The maximal change of the peak entropy −SM is about 3 J/kg K in a field of 5 T for the compounds with x = 0-0.5 at T ∼230 K close to TN. The drastic decrease of the MCE, by half, in the Ce2Fe17−xMnx system is traceable to a decrease of the spontaneous magnetization and the helical type of magnetic states in the compounds.  相似文献   

3.
The effect of Ni/Cu substitution on the magnetic properties, crystal and electronic structure of the polycrystalline GdNi5−xCux series has been studied. All compounds crystallize in the hexagonal CaCu5 type of crystal structure (space group P6/mmm). The temperature dependence of magnetic phase transition (Tmag) estimated from χAC(T) susceptibility as well as magnetization M(T) below room temperature indicates the maximum for x = 1.0 copper concentration. In the paramagnetic range (above 300 K) the magnetic susceptibilities follow a Curie-Weiss-type dependence. The effective magnetic moments are higher than theoretical value for free Gd3+.From X-ray photoelectron spectroscopy (XPS) data the valence band as well as the core level spectra have been analyzed. The filling of Ni3d band in the GdNi5−xCux system by charge transfer of Gd conduction electrons is revealed by a reduction of the satellite intensities in the Ni2p core level spectrum. The obtained results exhibit that the valence bands at the Fermi level are dominated by hybridized Ni3d and Gd5d states, when Cu3d states are rather localized about 3 eV below the Fermi level. Quite good relation between the magnetic properties and electronic structure has been found.  相似文献   

4.
The phase relation, microstructure, Curie temperatures (TC), magnetic transition, and magnetocaloric effect of (Gd1−xErx)5Si1.7Ge2.3 (x = 0, 0.05, 0.1, 0.15, and 0.2) compounds prepared by arc-melting and then annealing at 1523 K (3 h) using purity Gd (99.9 wt.%) are investigated. The results of XRD patterns and SEM show that the main phases in those samples are mono-clinic Gd5Si2Ge2 type structure. With increase of Er content from x = 0 to 0.2, the values of magnetic transition temperatures (TC) decrease linearly from 228.7 K to 135.3 K. But the (Gd1−xErx)5Si1.7Ge2.3 compounds display large magnetic entropy near their transition temperatures in a magnetic field of 0-2 T. The maximum magnetic entropy change in (Gd1−xErx)5Si1.7Ge2.3 compounds are 24.56, 14.56, 16.84, 14.20, and 13.22 J/kg K−1 with x = 0, 0.05, 0.1, 0.15, and 0.2, respectively.  相似文献   

5.
We report on the room temperature strong (∼80%) electroresistance (ER) in the double perovskite with mixed Mn valence: Sr2−xGdxMnTiO6, 0 ≤ x ≤ 1. Both, continuous and pulsed current-voltage curves are almost identical which indicates that the observed electroresistance is not associated with heating. This is also supported by simultaneous temperature measurements. ER is negligible (absent) in the x = 0 compound and increases with the increase of Gd content ‘x’. The amplitude of ER has a maximum for x = 0.75, suggesting that ER is determined by both the double exchange and the Mn3+ concentration. At the same time, magnetic interactions change from the antiferromagnetic (x = 0) to ferromagnetic ones as x → 1, thus linking the ER with ferromagnetism.  相似文献   

6.
Sr2FexMo2−xO6 (x = 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5 wt.%) (SFMO) double perovskite oxides of different compositions have been prepared by sol-gel method. These materials were subjected to X-ray diffraction and found that crystal structure changes from tetragonal to cubic around x = 1.2 wt.%. Lattice parameters and unit cell volume have been calculated using X-ray diffraction data. Magnetization studies have been carried out using Vibrating Sample Magnetometer ranging from −15 kOe to +15 kOe and saturation magnetization (Ms) has been determined. Electrical resistivity and magnetoresistance studies have been carried out in the magnetic field range of −40 kOe to +40 kOe keeping the temperature constant at 5, 150 and 300 K using standard four-probe method. Resistivity studies have also been carried out in the temperature ranging from 5 to 300 K keeping the magnetic field constant at 0, 10, 20 and 40 kOe. Maximum degree of Fe/Mo ordering (ηmax) of SFMO has been calculated and compared with magnetic and transport properties. It has been found that there is a strong correlation between 3 parameters ηmax, Ms and MR (%), i.e. all of them show a maximum at x = 1.0 wt.% and decreases as x deviates from 1.0 in SFMO. It has been also found that there is a different resistivity behavior between x ≤ 1.2 wt.% and x > 1.2 wt.% samples of SFMO. Semiconductor metal transition temperature was found to be maximum at x = 1.0 wt.%.  相似文献   

7.
A series of Gd100−xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys were prepared by arc-melting. The Curie temperature (TC) associated with the ferromagnetic-paramagnetic transitions, derived from M-T curves, show decrease in TC for as-cast alloys (∼279 K) as compared to as-cast Gd (∼292 K). No appreciable decrease in the |ΔSM|max values ∼4.6 J/kg K (0-2 T) and ∼8.6 J/kg K (0-5 T) were observed upon alloying Gd with Mn up to x ≤ 15 at.%. Refrigerant capacity (q) showed negligible variation ∼195 J/kg (0-2 T) and ∼450 J/kg (0-5 T) with increasing Mn (up to x ≤ 15 at.%) content. Similar values of |ΔSM|max and q coupled with ∼13 K decrease in TC for as-cast Gd100−xMnx (0 ≤ x ≤ 15) alloys as compared to Gd, suggests expansion of working temperature region of Gd upon alloying with Mn up to 15 at.%. Low cost, adjustable TC, favorable magnetocaloric properties make Gd100−xMnx alloys potential candidates as second-order transition based magnetic refrigerants for near room temperature air-conditioning and magnetic refrigeration.  相似文献   

8.
The PbSe1−xTex alloys with x = 0.2, 0.3, 0.5, 0.85 and 1.0 were prepared by induction melting, ball milling and spark plasma sintering techniques. The thermoelectric properties of the samples were investigated. The XRD analysis indicated that all samples are NaCl-type structure solid solutions Pb(Se,Te) containing nanograins. Increasing Te content resulted in increasing the lattice parameter a. The thermoelectric measurements show that all samples are n-type semiconductors in temperature range from 300 K to 673 K. The electrical resistivity of the doped sample is much smaller than that of pure PbSe, but comparable to that of PbTe. The absolute Seebeck coefficients for the doped sample PbSe1−xTex with x = 0.2, 0.3 and 0.5 range from 150 μV/K at 300 K to 250 μV/K at 673 K, which is much larger than that of pure PbSe (66-138 μV/K), but smaller than that of PbTe (230-310 μV/K) in the same experimental conditions. The thermal conductivity for the doped sample PbSe1−xTex with x = 0.2, 0.3 and 0.5 range from 0.95 to 0.66 W/m K, which is much smaller than that of pure PbSe (2.1-1.3 W/m K) or PbTe (1.4-1.1 W/m K). As a result, the figure of merit for the doped sample can be enhanced. The maximum dimensionless figure of merit ZT of 1.15 was obtained in the sample PbTe0.5Se0.5 at 573 K, more than 50% higher than that of pure PbTe prepared in the same condition.  相似文献   

9.
A spinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition at around 226 K. Non-magnetic substitution effect on the M-I transition, TM-I, in Cu(Ir1−xMx)2S4 (M = Sn, Hf) has been studied on the focus of the rather low composition region of x. Magnetic property of Cu(Ir1−xMx)2S4 (M = Sn, Hf) has been examined experimentally. The TM-I decreases with increasing x and the temperature hysteresis becomes unclear within the experimental errors. The step anomaly in the magnetic susceptibility smears out and the TM-I becomes ill defined around x = 0.20 in Cu(Ir1−xSnx)2S4, and x = 0.10 in Cu(Ir1−xHfx)2S4, respectively. These substitutions play an important role in decoupling the spin-dimerization of Ir4+-Ir4+ in CuIr2S4, and lead the destruction of the metal-insulator transition.  相似文献   

10.
The synthesis, structural, magnetic and dielectric properties of a new type of high permittivity materials La2−xCaxNiO4+δ (x = 0, 0.1, 0.2, 0.3) (abbreviated as LCNs) were reported. The samples were prepared through conventional solid state reaction route. Detailed structural information was retrieved by Rietveld refinement; normalized bond length and bond valence was calculated to investigate the compression/dilation effect of bonds and atoms in unit cell. It can be found all samples belong to K2NiF4 structure with space group I4/mmm. Doping of Ca in La2NiO4+δ shrinks the unit cell and makes the structure tend to become instable. Three types of (La, Ca)-O bonds, and two kinds of Ni-O bonds exist in LCNs. Along c axis there are alternately compressed (La,Ca)O9 dodecahedra and lengthened NiO6 octahedra. Room temperature magnetic measurements show that the materials are paramagnetic and Ca doping can improve the spontaneous magnetization. Furthermore, all samples have colossal values of the dielectric constant (?) at frequencies lower than 1 kHz. Interestingly, La1.8Ca0.2NiO4+δ maintains its high permittivity at frequencies up to 1 MHz while La1.7Ca0.3NiO4+δ has the lowest dielectric loss (tan δ). Calcium doping can effectively enhance ? and inhibit tan δ. The distortion of (La,Ca)O9 dodecahedra can well explain their dielectric properties.  相似文献   

11.
12.
The samples of Cu1−xPtxFeO2 (0 ≤ x ≤ 0.05) delafossite were synthesized by solid state reaction method for studying thermoelectric properties. The properties of Seebeck coefficient, electrical conductivity and thermal conductivity were measured in the high temperature ranging from 300 to 960 K. The results of Seebeck coefficient, electrical conductivity and power factor were increased with increasing Pt substitution and temperature. The thermal conductivity was decreased from 5.8 to 3.5 W/mK with increasing the temperature from 300 to 960 K. An important results, the highest value of power factor and ZT is 2.0 × 10−4 W/mK2 and 0.05, respectively, for x = 0.05 at 960 K.  相似文献   

13.
The effect of Ca on the microstructure and magnetocaloric effects has been investigated in the La1−xCaxFe11.5Si1.5 (x = 0, 0.1, 0.2 and 0.3) compounds. The introduction of Ca leads to the appearance of minor α-Fe and Ca-rich phases, which affects the actual compositions of the main phases for the Ca containing samples. With increasing the Ca concentration, the Curie temperature TC increases from 183 to 208 K, and the maximum magnetic entropy changes |ΔS| at the respective TC with a magnetic field change from 0 to 5 T are 21.3, 19.5, 16.9, and 11.2 J/kg K for x = 0, 0.1, 0.2, and 0.3, respectively. The nature of the magnetic transition changes from first-order to second-order with an increase in Ca concentration, which leads to a reduction of the hysteresis and a decrease of the magnetic entropy change. However, the relative cooling power for La1−xCaxFe11.5Si1.5 compounds remains comparable with or even larger than that of other magnetocaloric materials over a wide temperature range. The higher TC and the smaller hysteresis in comparison with those of the parent compound suggest that the La1−xCaxFe11.5Si1.5 compounds could be suitable candidates for magnetic refrigerants in the corresponding temperature range.  相似文献   

14.
We have studied the Mn 2p, Ca 2p, and Pr 4d core levels of Pr1-xCaxMnO3 (x = 0.2, 0.33, 0.4 and 0.84) as a function of x using X-ray photoelectron spectroscopy both at room temperature as well as 77 K. Suppression of chemical potential shifts have been observed at 77 K compared to that of room temperature spectra. We have discussed this result by considering the concept of phase separation.  相似文献   

15.
The anisotropy compensation and magnetostrictive properties of Tb1−xHox(Fe0.8Co0.2)2 (0.60 ≤ x ≤ 1.0) alloys have been investigated. The easy magnetization direction (EMD) at room temperature rotates from the 〈1 1 1〉 axis (x ≤ 0.75) to the 〈1 0 0〉 axis (x ≥ 0.90) through an intermediate state 〈1 1 0〉, subjected to the anisotropy compensation between Tb3+ and Ho3+ ions. Composition anisotropy compensation is realized near x = 0.75. The Tb0.25Ho0.75(Fe0.8Co0.2)2 alloy has a minimum anisotropy and a large spontaneous magnetostriction coefficient λ111 (≈740 ppm) at room temperature. The strong 〈1 1 1〉-oriented 1-3 epoxy-bonded composite has been fabricated by curing under a moderate magnetic field. A high low-field magnetostriction of about 400 ppm at 3 kOe is obtained for the 1-3 epoxy/Tb0.25Ho0.75(Fe0.8Co0.2)2 composite with 40-vol% alloy particles, which can be attributed to the low magnetic anisotropy, EMD lying along 〈1 1 1〉 direction, the strong 〈1 1 1〉-textured orientation and the chain structure.  相似文献   

16.
The Mn-doped compounds Bi1.4La0.6Sr2CaCu2Oy were prepared by sol-gel method. The structural variation was characterized systematically by X-ray diffraction (XRD), infrared (IR) spectra and Raman scattering spectra, respectively. The electrical and magnetic properties of the compounds were investigated by the temperature dependence of resistivity (R-T) and magnetic hysteresis loop (M (H)) measurements. Results indicate that the subtle change of lattice parameters has taken place in the compounds, which is attributed to CuO2 planes canting and Mn valence alternation. In the condition of preserving Bi-2212 structure, Bi1.4La0.6Sr2CaCu2−xMnxOy compound has optimal resistivity and magnetism at x = 2%, which could provide a candidate as new barrier in Josephson junction in future.  相似文献   

17.
Superconductors Ba1−xKxBiO3 and body-centered double perovskites Ba1−xKxBi1−yNayO3 have been selectively synthesized by a facile hydrothermal route. The appropriate ratio and adding sequence of initial reagents, alkalinity, reaction temperature and time are the critical factors that influence the crystal growth of the compounds. The purity and homogeneity of the crystals were detected by the ICP, SEM, EDX and TEM studies. Magnetic measurements show that the superconducting transition temperatures TC of Ba1−xKxBiO3 decrease from 22 K (for x = 0.35) to 8 K (for x = 0.55) with increasing the K doping level.  相似文献   

18.
The SmFe1−xCoxAsO (x = 0 − 0.25) superconductors were synthesized by mechanical alloying (MA) and rapid sintering method with Co atoms doped into FeAs layers to replace the Fe sites. The phase purity and superconducting properties of the samples were characterized by X-ray diffraction, electrical resistivity, magnetic susceptibility and Hall coefficient. All the samples belong to the tetragonal ZrCuSiAs structure type with the grain size in 1-3 μm. The superconducting critical temperature Tc of SmFe0.9Co0.1AsO was 12.5 K, and the structure/SDW transition was suppressed by Co doping. The negative Hall coefficient of SmFe0.9Co0.1AsO indicated the electron conduction in the sample. The charge carrier density is about 2 × 1020 cm−3 at the temperature lower than 150 K, larger than that of SmFeAsO.  相似文献   

19.
Nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) manganites were prepared by a soft chemical method (Pechini method) followed by auto-combustion and sintering in air at 1073 or 1473 K. Single-phase powders with general composition Ca1−xSmxMnO3 were obtained after 18 h annealing. The particle and grain sizes of the substituted Sm-manganites did not exhibit variation with samarium content, but increase with increasing the sintering temperature. All manganites show two active IR vibrational modes near 400 and 600 cm−1 characteristic of the BO6 octahedron vibrations.For the samples sintered at Ts = 1473 K, the partial substitution of calcium by samarium in the CaMnO3 phase induces a marked decrease in the electrical resistivity, in the temperature range of 300-900 K, and at the same time a metal-to-insulator transition occurs; for Ts = 1073 K all the samples present semiconductor behaviour. With the increase of the annealing temperature the grain size increases and a metal-semiconductor transition appears. The results can be ascribed to the Mn4+/Mn3+ ratio and particle grain size. The effects of particle size on the electrical properties can be attributed to the domain status, changes in the Mn-O-Mn bond angle and Mn-O bond length.  相似文献   

20.
This paper proposes La1−xKxFeO3 prepared by self-propagating high-temperature synthesis (SHS) as an alternative to platinum catalysts for promoting diesel soot combustion. The catalytic property of eleven products SHSed with different substitution ratios of potassium (x = 0-1) was experimentally evaluated using a thermobalance. In the mass loss curves of the product, T50 was defined as the temperature at which the weight of the reference soot decreases to half its initial weight. The BET specific surface area of SHSed La1−xKxFeO3 depended on x strongly. All the products showed good oxidation catalytic activity. Despite having the smallest surface area (0.11 m2/g) among the obtained products, La0.9K0.1FeO3 (x = 0.1) was found to be the best catalyst with the lowest T50 (442 °C). T50 of La1−xKxFeO3 decreased with increasing x for x > 0.2. The products with x = 0.6 and 0.8 were the second-best catalysts in terms of their T50. Moreover, average apparent activation energy of La0.9K0.1FeO3 (x = 0.1) calculated by Friedman method using TG was as much as 61 kJ/mol lower than that of Pt/Al2O3 catalyst. In conclusion, potassium-substituted SHSed La1−xKxFeO3 can be used as an alternative to Pt/Al2O3 for soot combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号