首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
利用Gleeble热模拟压缩实验,研究316LN奥氏体不锈钢在温度950℃~1250℃、应变速率0.001s-1~1.0s-1下的高温变形特征,并测得相应的流动应力曲线。对实验数据进行计算拟合,建立加工硬化-动态回复和动态再结晶"两阶段"高温流动应力模型、动态再结晶百分数及晶粒尺寸模型。将所建模型写入有限元软件进行数值模拟,其结果与实验吻合,说明该模型准确可靠,可用于316LN热变形过程的数值模拟。  相似文献   

2.
利用Gleeble-1500D热力模拟试验机在850~1250℃,应变速率0.01~10 s-1,变形程度0.91条件下对316LN奥氏体不锈钢进行热压缩变形试验。在真应力应变曲线上没有出现明显应力峰值,金相观察表明,316LN不锈钢在热变形过程中发生了动态再结晶。对实验数据进行拟合,得到316LN不锈钢的热激活能和热变形方程,并给出了发生动态再结晶的临界应变和临界应力以及Zener-Hollomon参数。  相似文献   

3.
应用Gleeble-1500热模拟机,在变形温度900℃1250℃、应变速率0.005s-11250℃、应变速率0.005s-10.5s-1条件下,通过高温拉伸实验研究316LN不锈钢的流变应力行为,分别采用参数反求法和传统的回归统计法计算流变应力方程参数并进行对比,结果表明,采用教学-学习算法(TLBO)反求流变应力方程参数更准确、高效,可用参数反求法替代传统回归统计法,从而快速获得材料流变应力方程参数。  相似文献   

4.
谷鹏  陈海燕 《铸造技术》2014,(6):1144-1147
采用等温压缩法对Zn-0.8Cu-0.3Ti合金的高温流变行为进行了研究,得到其在变形温度为210300℃、应变速率为0.01300℃、应变速率为0.0110.00 s-1条件下的流动真应力-应变曲线和微观组织。结果表明,Zn-0.8Cu-0.3Ti合金在高温压缩变形条件下,合金的流变应力随着应变速率的减小或变形温度的增大而增大。在热变形过程中合金的微观组织由ε相、TiZn15相和η相构成,且在热变形过程中存在动态再结晶。  相似文献   

5.
利用Gleeble-3800热模拟试验机对核电主管道锻造专用钢316LN钢进行等温热压缩实验,研究了应变速率为0. 001、0. 01、0. 1和1 s-1,变形温度为900、1000、1100、1200和1240℃,压缩变形量为60%条件下的316LN钢的高温流变行为。实验结果表明,高温流变应力在一定变形条件下,呈现出典型的单峰型动态再结晶的应力-应变曲线特征,随着变形温度的升高和应变速率的降低而降低。采用Arrhenius双曲正弦关系描述316LN钢的高温流变行为,确定其热变形激活能Q=411. 46 k J·mol-1,建立316LN钢的流变应力本构方程,其结果可为核电主管道锻造工艺的数值模拟和工艺参数的确定提供参考。  相似文献   

6.
任树兰  刘建生  李景丹  王瑞  段兴旺 《锻压技术》2017,(10):162-165,169
为了研究铸态316LN钢ESR材料的高温变形行为,建立铸态316LN钢ESR材料高温塑性本构方程,采用Gleeble-1500D热模拟试验机对316LN钢进行等温压缩试验,研究了316LN钢ESR材料在变形温度为900~1200℃、应变速率为0.001~1 s~(-1)、最大变形量为55%条件下热变形行为,并测得相应的流动应力-应变曲线。结果表明,在高变形温度、低应变速率的条件下,更有利于动态再结晶的发生。通过对试验数据进行多元线性拟合计算,得到了316LN钢的热变形激活能,建立了316LN钢ESR材料的高温塑性本构方程。  相似文献   

7.
通过在Gleeble-1500热模拟试验机进行高温压缩试验,以实验得到316LN奥氏体不锈钢真应力-真应变曲线为基础,并结合高温变形显微组织,对其动态再结晶行为进行研究,从而得到热激活能Q、热变形方程以及动态再结晶的基本规律,初步建议在生产轧制过程中,将轧制温度控制在1050℃左右,应变速率小于0.01 s-1为宜,为该产品生产提供了重要依据。  相似文献   

8.
为了研究退火态42CrMo钢的热变形行为,利用Gleeble3800热模拟试验机进行了单道次热压缩实验,获得了变形温度930~1230℃、应变速率0.001~1 s-1条件下的高温流变应力曲线。分别应用Arrhenius方程和Yada模型构建了42CrMo钢的高温本构模型和动态再结晶动力学模型,并基于动态材料模型应用不同变形条件下的峰值应力构建了其热加工图。结果表明,在大部分变形条件下,高温流变应力曲线呈典型动态再结晶特征,由于动态再结晶的作用,流变应力随变形温度的升高或应变速率的降低而减小。基于峰值应力构建的42CrMo钢高温本构模型和动态再结晶模型可以用于预测不同变形条件下的流变应力和微观组织演变。此外,根据42CrMo钢的热加工图,最佳热加工工艺参数范围为1100~1230℃、0.01~1 s-1。  相似文献   

9.
对Cu-Cr-Zr-Ag合金在Gleeble-1500D热模拟试验机上进行热压缩实验,对合金在应变速率为0.001~10 s-1、变形温度为650~950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行了研究。结果表明,流变应力随变形温度升高而减小,随应变速率提高而增大。Cu-Cr-Zr-Ag合金在热变形过程中的动态再结晶机制受变形温度和应变速率控制。当温度达到950℃,应变速率为0.001 s-1时,Cu-Cr-Zr-Ag合金发生完全的动态再结晶。该合金高温热压缩变形时的热变形激活能Q为343.23 k J/mol,同时利用逐步回归法建立了该合金的流变应力方程。  相似文献   

10.
为了模拟难变形镍基高温合金GH4720Li开坯锻造过程,采用Gleeble-3800热模拟试验机研究经均匀化处理的GH4720Li铸锭高温压缩变形时的力学流动行为,分析高温变形过程中微观组织演化规律。结果表明,GH4720Li合金在1100℃,0.1 s-1条件下应力水平达到250 MPa,且应力对热变形温度和应变速率敏感,动态再结晶是主要的软化机制。粗晶组织提高了合金动态再结晶临界变形温度和应变速率,如在变形量为60%,变形条件为1140℃,0.001 s-1和1180℃,0.001s-1才能发生完全动态再结晶。计算的粗晶GH4720Li合金热变形激活能Q=1171kJ/mol,较高的热变形激活能表明粗晶组织不利于热塑性变形和动态再结晶的发生。基于本研究,铸态GH4720Li合金开坯温度应高于1140℃,同时保证较低的应变速率,以确保动态再结晶的充分发生,实现枝晶组织破碎。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号