首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCFO) powders were synthesized using two methods, solid-state reaction (SSR) method and cit-rate-EDTA complexing method (CC-EDTA). Then the powders were pressed to green disks of 19 mm in diameter and sintered at 1140℃ for 5 h. The shrinkage rate and relative density of the membranes prepared from the perovskite-type powders were determined and calculated, and the powders and derived membranes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The re-sults show that the shrinkage rates of the two kinds of disks are nearly the same (about 10%). The disks prepared by the SSR method had a bigger grain size and lower relative density than those prepared by the CC-EDTA method. The conductivity of the membranes prepared by the SSR method was about 38 S/cm, higher than that of the membranes prepared by the CC-EDTA method, which was about 30 S/cm, at the same temperature of 600℃.  相似文献   

2.
Effects of doping (with Ce and Pr) and substitution of Sr, Nd, Eu, and Ni for Ba and Cu on the lowtemperature (T = 200–300°C) decomposition of oxygen-nonstoichiometric Ba2YCu3O7 ? δ have been studied. Both the doping and partial substitution for any of the principal components was found to increase the stability of the 123 compounds with respect to the decomposition into oxygen-depleted and oxygen-rich phases. Both doping and substitution to a level of ~2% lead to a narrowing of the immisibility dome and a decrease in the critical temperature. In the first place, the decomposition is suppressed in the bulk of grains. To increase the stability of near-boundary regions of grains, a high degree (~20 at %) of substitution is necessary.  相似文献   

3.
The total conductivity, oxygen sorption property, oxygen permeability and stability of pure perovskite-type oxide BaCo0.7Fe0.2Nb0.1O3−δ (BCFNO) in real operating conditions were investigated. Its total conductivity was measured to be 3.6 S·cm−1 at 600°C. Though the total conductivity of the BCFNO membrane is much smaller than that of the Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membrane, the oxygen permeability of the BCFNO membrane is similar to that of the BSCFO membrane. SEM observation and EDX analysis of the BCFNO and BSCFO membranes indicated that no segregation of metal ions was found for the used BCFNO membrane while the original perovskite phase of BSCFO decomposed under the experimental condition. The experimental results of oxygen permeability and stability were consistent with the analysis on the oxygen sorption property of perovskites.  相似文献   

4.
A study of the restoration of the structure and superconducting properties of the nonstoichiometric Ba2YCu3O7 ? δ with different oxygen contents after low-temperature decomposition at T = 200 and 300°C has been carried out. It has been shown that the annealing of the decomposed samples at temperatures higher than the decomposition range (e.g., at 400–900°C) does not lead to the complete restoration of the structure because of the presence of defects in the cation sublattices, which appear in the course of decomposition. The degree of restoration is less, the greater the degree of decomposition. An analogy has been revealed between the structure and properties of samples which underwent low-temperature decomposition and were subjected to irradiation by high-energy particles; a similar structure was found in ceramics synthesized at reduced temperatures (<900°C).  相似文献   

5.
The γ-Fe2O3/SiO2 composite is synthesized by coprecipitation of the magnetic carrier γ-Fe2O3 (specific surface area S = 17 m2/g, pore volume V = 0.51 cm3/g) and silicon dioxide from a solution of sodium-liquid glass. The influence of the synthesis conditions (SiO2 content, temperature, introduction of electrolyte into reaction mixture) on the structural and adsorption characteristics of the resulting composites is studied. Coprecipitation in the presence of electrolyte (5% NaCl) makes it possible to obtain the most highly porous composites. At SiO2 content from 20 to 50%, S is from 70 to 150 m2/g, V is from 0.74 to 0.89 cm3/g. These composites have a large adsorption capacity for test substances: a main dye, methylene blue, and an enzyme, cytochrome C. The capacity of these composites on dye (15–40 mg/g) is approximately 10–30 times larger that of the initial iron oxide (1.2 mg/g), and on enzyme (130–280 mg/g) 3–6 times greater than the capacity of iron oxide (45 mg/g). Such composites can be used as magnetic sorbents to for purification, concentration or immobilization of water-soluble organic substances and biopolymers.  相似文献   

6.
In the present work, the α/β Si3N4 ceramics were fabricated by spark plasma sintering (SPS) at 1400-1500 °C for 6 min with 3wt.%MgO + 5wt.%Al2O3 and 3wt.%MgO + 5wt.%Y2O3 as sintering additives. The results showed that the phase composition, microstructure and mechanical properties of α/β Si3N4 ceramics were highly dependent on the type of sintering additive. The incomplete phase transformation from α to β occurred in the presence of an oxynitride (Mg-Al(Y)-Si-O-N) liquid phase. Compared with MgO-Al2O3, MgO-Y2O3 can significantly improve the β conversion rate of as-sintered α/β Si3N4 ceramics. And the as-sintered ceramics using MgO + Al2O3 as sintering additives had higher mechanical properties.  相似文献   

7.
In this study, suspension plasma spraying (SPS) was applied to deposit double perovskite Sr2Fe1.4Mo0.6O6?δ (SFM) which can be used as both cathode and anode for solid oxide fuel cells. The effects of SFM concentration on the electrode phase composition, microstructure, and catalytic performance were investigated. The electrodes showed a dense structure when it was deposited at a concentration of 0.05 mol/L. The cathode performance was limited by the limited three-phase boundaries and poor gas diffusion. At 750 °C, cathode polarization (R pc) was 0.19 Ω cm2. When the SFM concentration increased to 0.075 mol/L, the deposits revealed a porous microstructure with well-bonded fine particles. As a result, the Rpc decreased significantly to 0.078 Ω cm2 at 750 °C. However, when the SFM concentration was further increased to 0.1 mol/L, the R pc increased owing to the limited interface bonding between the non-molten particles. As a result, it was found that the SFM suspension concentration should be optimized to achieve a highly active SFM by SPS process. Moreover, when the optimized deposit was employed as an anode and tested in a hydrogen atmosphere, it showed anode polarization resistance (Rpa) of 1.5 Ω cm2 at 750 °C.  相似文献   

8.
Combination of mechanical alloying and friction stir processing was used for the fabrication of Al/(Al13Fe4 + Al2O3) nano-composites. Pre-milled hematite + Al powder mixture was introduced into the stir zone generated on 1050 aluminum alloy sheet by friction stir processing. Uniform and active milled powder mixture reacted with plasticized aluminum to produced Al13Fe4 + Al2O3 particles. Al13Fe4 intermetallic showed elliptical shape with a typical size of ~ 100 nm, while nano-sized Al2O3 exhibited irregular floc-shaped particles that formed clusters with the remnant of iron oxide particles in the fine recrystallized aluminum matrix. As the milling time (1-3 h) of the introduced powder mixture increased, the volume fraction of Al13Fe4 + Al2O3 particles increased in the fabricated composite. The hardness and ultimate tensile strength of the fabricated nano-composites varied from 54.5 to 75 HV and 139 to 159 MPa, respectively; these are much higher than those of the friction stir processed base alloy (33 HV and 97 UTS). The highest hardness and strength were achieved for the nano-composite fabricated using the 3-h milled powder mixture; hard nano-sized reaction products and fine recrystallized grains of Al matrix had major and minor roles on enhancing these properties, respectively.  相似文献   

9.
Carbon-coated LiMn0.8Fe0.2PO4/C (C = 5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) cathode material is synthesized using a solid-state method. No impurity is found within the synthesized active material, which is confirmed to have an olivine structure with particle sizes in the range of 100 nm to 200 nm. The LiMn0.8Fe0.2PO4/C (C = 10 wt.%) active material shows an outstanding discharge capacity of 121.7 mAh·g−1, along with a high capacity maintenance rate of 87.9 % at 2 C against the 0.2 C rate. In addition, this sample shows the most outstanding discharge capacity and coulombic efficiency in the cycling performance tests.  相似文献   

10.
In recent years, numerous techniques have been developed to mimic nacre-like hierarchical architectures in order to improve the damage tolerance of materials. We present herein a simple strategy to fabricate such a hierarchical architectured Al2O3–Y2O3 composite coating via atmospheric plasma spraying. The evolution of the phase and microstructure of the Al2O3–Y2O3 composite coating were characterized under conditions of high-temperature exposure in air at 800-1350 °C. The hardness and porosity of several typical coatings were determined. In situ formation of dense hierarchical architectured Al2O3–YAG composite coating with improved hardness was achieved after heat treatment at 1350 °C. Compared with Al2O3 coating, elevated toughness was found for the hierarchical architectured Al2O3–YAG composite coating, which can be ascribed to the distribution of YAG phase that contributed to crack termination and deflection, and microbridging. After thermal aging treatment at 1350 °C, the hierarchical architectured Al2O3–YAG composite coating was quite stable after 100 h of thermal exposure. Furthermore, the Al2O3–Y2O3 composite coating exhibited superior sintering resistance compared with the Al2O3 coating.  相似文献   

11.
In this study, the Ni–B–Al2O3 composite was successfully coated on the surface of Ck45 steel by elecroless method. X-Ray diffraction analysis (XRD) and scanning electron microscopy (SEM) were utilized in order to investigate and identify the coating properties. Wear behavior of the coating was studied by the pinon- disk test. Corrosion behavior of the Ni–B and Ni–B–Al2O3 coatings was investigated by using Tafel polarization diagrams in the 3.5% NaCl solution at room temperature. The obtained data demonstrate that the addition of Al2O3 nanoparticles to the coating has resulted in improving the tribological behavior of the coating due to the presence of the composite nanoparticles. Also, the results of electrochemical testing show that corrosion resistance of the electroless Ni–B coating with Al2O3 nanoparticles has dramatically increased.  相似文献   

12.
Electrochemical and interfacial properties of (PEO)10LiCF3SO3−Al2O3 composite polymer electrolytes (CPEs) prepared by either ball milling or stirring are reported. Ball milling was introduced into a slurry preparative technique utilizing PEO, lithium salt and Al2O3 powder ranging from 5 to 15 wt.%. The ionic conductivity was increased by ball milling over a range of temperatures. In particular, a significant increase at low temperature below the melting point of crystalline PEO was observed. Interfacial stability between lithium electrode and CPE was significantly improved by the addition of alumina as well as by ball milling. The electrochemical stability window produced by (PEO)10LiCF3SO3−Al2O3 ball milling was higher than that of stirring, which was about 4.4 V. Charge/discharge performance of Li/CPE/S cells with (PEO)10LiCF3SO3−Al2O3-12 hr ball milling was superior to that of a pristine polymer electrolyte due to the low interface resistance and high ionic conductivity.  相似文献   

13.
The fine structure and electrophysical properties of nonstoichiometric YBa2Cu3O7 − δ ceramics and the effect of low-temperature annealing (t ⩾ 200°C) in various atmospheres on these parameters have been studied. It has been shown that, during annealing in a vacuum, the decomposition is quite sluggish; structures typical of initial stages of decomposition are observed. The decomposition in an inert-gas atmosphere occurs more actively, and structures typical of stages of deep decomposition are realized. It has been found that, during low-temperature annealing, the structure and properties are affected by two factors; these are the decomposition into phases differing in the oxygen content, and water absorption, leading to the transformation with the formation of a pseudo-cubic lattice. The annealing atmosphere substantially affects the kinetics of both processes.  相似文献   

14.
The composition and the structure of ceramic EuBa2Cu3O6 + δ (Eu-123) oxide samples annealed in steps with varying processing conditions (in air or oxygen and argon atmosphere at a temperature of 940–960°С for 1–70 h with or without homogenization) were studied by the X-ray phase and chemical analysis, electron diffraction pattern analysis, elemental analysis, and high-resolution transmission electron microscopy. Regardless of the processing conditions, Eu-123 nanostructured oxide with a tetragonal or orthorhombic structure and domains 1–20 nm in size was obtained as a result of annealing. Nanostructuring of the samples, which was revealed by high-resolution electron microscopy, is attributed to their chemical nature: the presence of identical structural elements in members of the homologous Eu n Ba m Cum + nO y series of oxides allows them to intergrow coherently and create an illusion of a single crystal. Just like any other member of the Eu n Ba m Cum + nO y series, oxide Eu-123 is disproportionate depending on the annealing conditions to form other members of this series located on either side of the dominant oxide. Temperature Tc of the superconducting transition of each member of the series depends on the average oxidation state of copper \(\overline {Cu} \). At \(\overline {Cu} \) < 2, all members of the series have a tetragonal structure and do not exhibit superconducting properties. At \(\overline {Cu} \) = 2.28, five members of the Eu n Ba m Cum + nO y series with matrices (Ba : Cu) 5 : 8, 3 : 5, 2 : 3, 5 : 7, and 3 : 4 exhibit superconducting properties with Tc = 82–90 K.  相似文献   

15.
The synthesis of single phase tin-ferrite, SnFe2O4, from tin (II) oxide or stannous oxide (SnO), and hematite (α-Fe2O3) solid precursors was carried out via high energy ball milling (HEBM) under wet condition involving the addition of controlled amounts of acetone. The stoichiometric amounts of the precursor materials were ball milled continuously for up to 22 h in a Spex-8000D mill using a ball-to-powder ratio of 40:1, with hardened stainless steel balls in WC-lined jars. The time-dependent formation of the SnFe2O4 based on combined X-ray diffraction and room temperature Mössbauer spectroscopy (MS) measurements revealed reaction enhancements associated with particles size reduction. The 22 h milled material indicated that synthesized SnFe2O4 had a particle size of 10.91 nm, coercivity of 4.44 mT, magnetic saturation/remanent ratio (M r/M s) of 0.085, while its superparamagnetic behavior was confirmed based on the combined MS and vibrating sample magnetometer measurements.  相似文献   

16.
The influence of the holding time upon annealing on the temperature of the viscous–brittle transition (temperature of embrittlement) Tf in a cobalt-based amorphous alloy of the composition Co69Fe3.7Cr3.8Si12.5B11 with a very low saturation magnetostriction λs (<10–7) has been studied. It has been established that the dependence of the embrittlement temperature Tf on the of time of holding ta can be described by an Arrhenius equation and that the embrittlement at the annealing temperatures above and below 300°C is described by different kinetic parameters. In the alloy under study, irrespective of the holding time, embrittlement occurs in a very narrow range of annealing temperatures, which does not exceed 5 K. Based on the experimental data on the evolution of the hysteresis magnetic properties upon the isochronous annealings and upon the isothermal holding, the regime of heat treatment that ensures a very high (about 50000) magnitude of the permeability µ5 (H = 5 mOe, f = 1 kHz) without the transition of the alloy into a brittle state has been determined.  相似文献   

17.
In the current investigation, Cr2O3–50% Al2O3 coating was deposited on ASTM-SA213-T-22 boiler steel and Fe-based superalloy Superfer 800H by D-gun spray process. The high-temperature corrosion performance of the coated as well as bare alloys was evaluated in Na2SO4–60%V2O5 molten salt, an aggressive environment at 900 °C under cyclic conditions. The kinetics of the corrosion were analyzed by the change in weight measurements which were taken after each cycle (i.e., 1-h heating in a tube furnace followed by 20-min cooling in ambient air) for a total period of 50 cycles. The X-ray diffraction and scanning electron microscopy/energy-dispersive X-ray analysis techniques were used for the analysis of corrosion products. During investigations, it was found that both the selected bare alloys have suffered intensive spallation in the form of removal of their oxide scales, which may be attributed to the formation of non-protective Fe2O3-dominated oxide scales, whereas the coated alloys have shown lesser weight gains along with better adhesiveness of the oxide scales with the substrate till the end of the experiment. The oxides of chromium and aluminum were the main phases revealed in the oxide scales of the coated specimens, which are reported to be protective against the hot corrosion.  相似文献   

18.
The permeability and stability of Sm0.7Sr0.3CoO3?δ (SSCO) regarding the special requirements for carbon capture and storage (CCS) application were investigated. Pure CO2 was used as the sweep gas at 900 °C, leading to that the oxygen permeation flux decreases by about 34 %. Several cycles of changing the sweep gas between helium and CO2 indicate the good reversibility of this degradation. Both carbonate formation and adsorption of CO2 on the membrane surface are responsible for the degradation of the membrane performance. The better CO2 resistance results from the substitution of Sm for Sr due to the higher acidity of Sm2O3 (1.278) than that of SrO (0.978) and a discontinuous layer of carbonate.  相似文献   

19.
The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY–Cr2O3 and CoNiCrAlY–Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4–25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings’ microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10?2 and 1.36 × 10?2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY–Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating’s degradation. Thus, the CoNiCrAlY–Cr2O3 coating was found to be more protective than the NiCoCrAlY–Cr2O3 coating under hot corrosion condition.  相似文献   

20.
Producing nanostructured materials through metastable phases is an interesting novel route in the field of ceramic materials. Due to their small grain size and uniform structure, these nanostructured bulk materials exhibit very interesting properties. Metastable coatings can be produced starting from microstructured powders through atmospheric plasma spray technique, followed by a quenching route. The initial powders are melted during the spraying and deposited over a substrate that is quenched with liquid nitrogen feeders, producing metastable coatings. The thermal-sprayed coatings have been characterized using x-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy. The properties of such coatings have been also studied obtaining promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号